Distinct CD8 T Cell Populations with Differential Exhaustion Profiles Associate with Secondary Complications in Common Variable Immunodeficiency
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SFB 1160 IMPATH
Deutsche Forschungsgemeinschaft
project A04
Deutsche Forschungsgemeinschaft
project A03
Deutsche Forschungsgemeinschaft
NV18-05-00162
Agentura Pro Zdravotnický Výzkum České Republiky
NU20-05-00282
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
35589883
PubMed Central
PMC9537220
DOI
10.1007/s10875-022-01291-9
PII: 10.1007/s10875-022-01291-9
Knihovny.cz E-zdroje
- Klíčová slova
- Activation, CVID, Differentiation, Exhaustion, Immunodeficiency, T cells,
- MeSH
- antigeny CD279 genetika MeSH
- antigeny CD28 MeSH
- běžná variabilní imunodeficience * MeSH
- CD8-pozitivní T-lymfocyty MeSH
- HLA-DR antigeny MeSH
- interleukin-10 MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD279 MeSH
- antigeny CD28 MeSH
- HLA-DR antigeny MeSH
- interleukin-10 MeSH
PURPOSE: Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency, with heterogeneous clinical presentation. Our goal was to analyze CD8 T cell homeostasis in patients with infection only CVID, compared to those additionally affected by dysregulatory and autoimmune phenomena. METHODS: We used flow and mass cytometry evaluation of peripheral blood of 40 patients with CVID and 17 healthy donors. RESULTS: CD8 T cells are skewed in patients with CVID, with loss of naïve and increase of effector memory stages, expansion of cell clusters with high functional exhaustion scores, and a highly activated population of cells with immunoregulatory features, producing IL-10. These findings correlate to clinically widely used B cell-based EURO classification. Features of exhaustion, including loss of CD127 and CD28, and expression of TIGIT and PD-1 in CD8 T cells are strongly associated with interstitial lung disease and autoimmune cytopenias, whereas CD8 T cell activation with elevated HLA-DR and CD38 expression predict non-infectious diarrhea. CONCLUSION: We demonstrate features of advanced differentiation, exhaustion, activation, and immunoregulatory capabilities within CD8 T cells of CVID patients. Assessment of CD8 T cell phenotype may allow risk assessment of CVID patients and provide new insights into CVID pathogenesis, including a better understanding of mechanisms underlying T cell exhaustion and regulation.
Faculty of Biology University of Freiburg Freiburg Germany
German Cancer Consortium partner site Freiburg Freiburg Germany
Institute of Experimental Immunology University of Zurich Zurich Switzerland
Signaling Research Centres BIOSS and CIBSS University of Freiburg Freiburg Germany
Zobrazit více v PubMed
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4:38–59. PubMed PMC
Cunningham-Rundles C. The many faces of common variable immunodeficiency. Hematology Am Soc Hematol Educ Program. NIH Public Access; 2012;301–5. PubMed PMC
Wehr C, Kivioja T, Schmitt C, Ferry B, Witte T, Eren E, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood Am Soc Hematol. 2008;111:77–85. PubMed
Giovannetti A, Pierdominici M, Mazzetta F, Marziali M, Renzi C, Mileo AM, et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J Immunol. Am Assoc Immunol. 2007;178:3932–43. PubMed
Guazzi V, Aiuti F, Mezzaroma I, Mazzetta F, Andolfi G, Mortellaro A, et al. Assessment of thymic output in common variable immunodeficiency patients by evaluation of T cell receptor excision circles. Clin Exp Immunol Wiley. 2002;129:346–353. PubMed PMC
Le Coz C, Bengsch B, Khanna C, Trofa M, Ohtani T, Nolan BE, et al. Common variable immunodeficiency-associated endotoxemia promotes early commitment to the T follicular lineage. J Allergy Clin Immunol Elsevier BV. 2019;144:1660–1673. PubMed PMC
Perreau M, Vigano S, Bellanger F, Pellaton C, Buss G, Comte D, et al. Exhaustion of bacteria-specific CD4 T cells and microbial translocation in common variable immunodeficiency disorders. J Exp Med Rockefeller Univ Press. 2014;211:2033–2045. PubMed PMC
Unger S, Seidl M, van Schouwenburg P, Rakhmanov M, Bulashevska A, Frede N, et al. The TH1 phenotype of follicular helper T cells indicates an IFN-γ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol Elsevier Inc. 2017;141:730–40. PubMed
Friedmann D, Unger S, Keller B, Rakhmanov M, Goldacker S, Zissel G, et al. Bronchoalveolar lavage fluid reflects a TH1-CD21low B-cell interaction in CVID-related interstitial lung disease. Front Immunol Frontiers Media SA. 2020;11:616832. PubMed PMC
Mannon PJ, Fuss IJ, Dill S, Friend J, Groden C, Hornung R, et al. Excess IL-12 but not IL-23 accompanies the inflammatory bowel disease associated with common variable immunodeficiency. Gastroenterol. Elsevier BV. 2006;131:748–756. PubMed
Berbers R-M, van der Wal MM, van Montfrans JM, Ellerbroek PM, Dalm VASH, van Hagen PM, et al. Chronically activated T-cells retain their inflammatory properties in common variable immunodeficiency. J Clin Immunol. 2021;41:1621–32. PubMed PMC
Mouillot G, Carmagnat M, Gérard L, Garnier JL, Fieschi C, Vince N, et al. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J Clin Immunol. 2010;30:746–755. PubMed
Edwards ESJ, Bosco JJ, Aui PM, Stirling RG, Cameron PU, Chatelier J, et al. Predominantly antibody-deficient patients with non-infectious complications have reduced naive B, Treg, Th17, and Tfh17 cells. Front Immunol. 2019;10:2593. PubMed PMC
Viallard J-F, Ruiz C, Guillet M, Pellegrin J-L, Moreau J-F. Perturbations of the CD8(+) T-cell repertoire in CVID patients with complications. Results Immunol Elsevier BV. 2013;3:122–128. PubMed PMC
Bateman EAL, Ayers L, Sadler R, Lucas M, Roberts C, Woods A, et al. T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin Exp Immunol Wiley. 2012;170:202–211. PubMed PMC
North ME, Webster AD, Farrant J. Primary defect in CD8+ lymphocytes in the antibody deficiency disease (common variable immunodeficiency): abnormalities in intracellular production of interferon-gamma (IFN-gamma) in CD28+ (‘cytotoxic’) and CD28- (‘suppressor’) CD8+ subsets. Clin Exp Immunol Wiley. 1998;111:70–75. PubMed PMC
Kuntz M, Goldacker S, Blum HE, Pircher H, Stampf S, Peter H-H, et al. Analysis of bulk and virus-specific CD8+ T cells reveals advanced differentiation of CD8+ T cells in patients with common variable immunodeficiency. Clin Immunol Elsevier BV. 2011;141:177–186. PubMed
de Lollo C, de Moraes Vasconcelos D, da Silva Oliveira LM, Domingues R, de Carvalho GC, da Silva Duarte AJ, et al. Chemokine, cytokine and type I interferon production induced by Toll-like receptor activation in common variable immune deficiency. Clin Immunol. Elsevier BV. 2016;169:121–7. PubMed
Carter CRD, Aravind G, Smalle NL, Cole JY, Savic S, Wood PMD. CVID patients with autoimmunity have elevated T cell expression of granzyme B and HLA-DR and reduced levels of Treg cells. J Clin Pathol BMJ. 2013;66:146–150. PubMed
de Lollo C, Vasconcelos D de M, da Silva Oliveira LM, de Oliveira Titz T, Carneiro-Sampaio M, Jacob CMA, et al. Impaired CD8+ T cell responses upon Toll-like receptor activation in common variable immunodeficiency. J Transl Med. Springer Nature; 2016;14:1–11. PubMed PMC
Lanio N, Sarmiento E, Gallego A, Carbone J. Immunophenotypic profile of T cells in common variable immunodeficiency: is there an association with different clinical findings? Allergol Immunopathol (Madr) Codon Publications. 2009;37:14–20. PubMed
Viallard J-F, Blanco P, André M, Etienne G, Liferman F, Neau D, et al. CD8+HLA-DR+ T lymphocytes are increased in common variable immunodeficiency patients with impaired memory B-cell differentiation. Clin Immunol Elsevier BV. 2006;119:51–58. PubMed
Malamut G, Verkarre V, Suarez F, Viallard J-F, Lascaux A-S, Cosnes J, et al. The enteropathy associated with common variable immunodeficiency: the delineated frontiers with celiac disease. Am J Gastroenterol Ovid Technol (Wolters Kluwer Health) 2010;105:2262–2275. PubMed
Szablewski V, René C, Costes V. Indolent cytotoxic T cell lymphoproliferation associated with nodular regenerative hyperplasia: a common liver lesion in the context of common variable immunodeficiency disorder. Virchows Arch. Springer Sci Bus Media LLC. 2015;467:733–40. PubMed
Olsson B, Andersson P-O, Jernås M, Jacobsson S, Carlsson B, Carlsson LMS, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med Springer Sci Bus Media LLC. 2003;9:1123–4. PubMed
McKinney EF, Lee JC, Jayne DRW, Lyons PA, Smith KGC. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature Springer Sci Bus Media LLC. 2015;523:612–6. PubMed PMC
McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol Annual Reviews. 2019;37:457–495. PubMed
Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity Elsevier BV. 2018;48:1029–1045.e5. PubMed PMC
Winkler F, Bengsch B. Use of mass cytometry to profile human T cell exhaustion. Front Immunol Frontiers Media SA. 2019;10:3039. PubMed PMC
Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157:714–25. PubMed PMC
Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A Wiley. 2015;87:636–645. PubMed
McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction [Internet]. arXiv [stat.ML]. 2018. Available from: http://arxiv.org/abs/1802.03426
Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A Wiley. 2011;79A:167–174. PubMed PMC
Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood Am Soc Hematol. 2003;101:2711–2720. PubMed
Fousteri G, Kuka M. The elusive identity of CXCR5+ CD8 T cells in viral infection and autoimmunity: cytotoxic, regulatory, or helper cells? Mol Immunol Elsevier BV. 2020;119:101–105. PubMed
Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, et al. Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature Springer Sci Bus Media LLC. 2019;572:481–7. PubMed PMC
Abdel-Hakeem MS, Manne S, Beltra J-C, Stelekati E, Chen Z, Nzingha K, et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat Immunol Springer Sci Bus Media LLC. 2021;22:1008–19. PubMed PMC
Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity. Immunol med Informa UK Limited. 2020;43:1–9. PubMed
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol Springer Sci Bus Media LLC. 2015;15:486–99. PubMed PMC
Pawelec G. Is there a positive side to T cell exhaustion? Front Immunol Frontiers Media SA. 2019;10:111. PubMed PMC
Chu T, Berner J, Zehn D. Two parallel worlds of memory T cells. Nat. Immunol. Springer Science and Business Media LLC; 2020 1484–5 PubMed
Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, et al. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity Elsevier BV. 2016;45:415–427. PubMed
Marashi SM, Raeiszadeh M, Enright V, Tahami F, Workman S, Chee R, et al. Influence of cytomegalovirus infection on immune cell phenotypes in patients with common variable immunodeficiency. J Allergy Clin Immunol Elsevier BV. 2012;129:1349–1356.e3. PubMed
Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature Springer Sci Bus Media LLC. 2016;537:417–21. PubMed PMC
Quigley MF, Gonzalez VD, Granath A, Andersson J, Sandberg JK. CXCR5+ CCR7- CD8 T cells are early effector memory cells that infiltrate tonsil B cell follicles. Eur J Immunol Wiley. 2007;37:3352–3362. PubMed
Kim H-J, Verbinnen B, Tang X, Lu L, Cantor H. Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature. Springer Sci Bus Media LLC. 2010;467:328–32. PubMed PMC
Smith TRF, Kumar V. Revival of CD8+ Treg-mediated suppression. Trends Immunol Elsevier BV. 2008;29:337–342. PubMed
Klocperk A, Unger S, Friedmann D, Seidl M, Zoldan K, Pfeiffer J, et al. Exhausted phenotype of follicular CD8 T cells in CVID. J Allergy Clin Immunol Elsevier BV. 2020;146:912–915.e13. PubMed
Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol Springer Nature. 2008;9:239–244. PubMed PMC
Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter H-H, et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin Immunol Elsevier BV. 2004;113:161–171. PubMed
Dhalla F, Lochlainn DJM, Chapel H, Patel SY. Histology of interstitial lung disease in common variable immune deficiency. Front Immunol. Frontiers Media SA. 2020;11:605187. PubMed PMC
Patel S, Anzilotti C, Lucas M, Moore N, Chapel H. Interstitial lung disease in patients with common variable immunodeficiency disorders: several different pathologies? Clin Exp Immunol Wiley. 2019;198:212–223. PubMed PMC
Han A, Newell EW, Glanville J, Fernandez-Becker N, Khosla C, Chien Y-H, et al. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease. Proc Natl Acad Sci U S A Proc Natl Acad Sci. 2013;110:13073–8. PubMed PMC
de Melo KM, Unger S, Keller B, Gutenberger S, Stumpf I, Goldacker S, et al. Increase of circulating α4β7 conventional memory CD4 and regulatory T cells in patients with common variable immunodeficiency (CVID) Clin Immunol. 2017;180:80–83. PubMed
van de Ven AAJM, Janssen WJM, Schulz LS, van Loon AM, Voorkamp K, Sanders EAM, et al. Increased prevalence of gastrointestinal viruses and diminished secretory immunoglobulin a levels in antibody deficiencies. J Clin Immunol Springer Sci Bus Media LLC. 2014;34:962–70. PubMed
Woodward J, Gkrania-Klotsas E, Kumararatne D. Chronic norovirus infection and common variable immunodeficiency. Clin Exp Immunol Wiley. 2017;188:363–370. PubMed PMC