Indirect maternal effects via nest microbiome composition drive gut colonization in altricial chicks
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37096441
DOI
10.1111/mec.16959
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotics, brood feeding, environmental microbiomes, probiotics, vertical transmission,
- MeSH
- kur domácí MeSH
- maternální dědičnost MeSH
- mikrobiota * MeSH
- Passeriformes * mikrobiologie MeSH
- střevní mikroflóra * MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Molecular Ecology and Evolution Globe Institute University of Copenhagen Copenhagen Denmark
Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark
Section for Ecology and Evolution Department of Biology University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Alambiaga, I., Álvarez, E., Diez-Méndez, D., Verdejo, J., & Barba, E. (2020). “The tale of the three little tits”: Different nest building solutions under the same environmental pressures. Avian Biology Research, 13(3), 49-56. https://doi.org/10.1177/1758155920943116
Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L., & Gilbert, M. T. P. (2016). Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends in Ecology & Evolution, 31(9), 689-699. https://doi.org/10.1016/j.tree.2016.06.008
Andreasson, F., Nord, A., & Nilsson, J.-Å. (2016). Brood size constrains the development of endothermy in blue tits. The Journal of Experimental Biology, 219(14), 2212-2219. https://doi.org/10.1242/jeb.135350
Arbizu, P. M. (2018). pairwiseAdonis: Pairwise multilevel comparison using adonis (0.32019). [Computer software]. https://github.com/pmartinezarbizu/pairwiseAdonis
Bańbura, J., Lambrechts, M. M., Blondel, J., Perret, P., & Cartan-Son, M. (1999). Food handling time of blue tits chicks: Constraints and adaptation to different prey types. Journal of Avian Biology, 30, 263-270.
Bambini, G., Schlicht, E., & Kempenaers, B. (2019). Patterns of female nest attendance and male feeding throughout the incubation period in blue tits Cyanistes caeruleus. Ibis, 161(1), 50-65. https://doi.org/10.1111/ibi.12614
Banerjee, S., Sar, A., Misra, A., Pal, S., Chakraborty, A., & Dam, B. (2018). Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers. Microbiology, 164(2), 142-153. https://doi.org/10.1099/mic.0.000597
Barrientos, R., Bueno-Enciso, J., & Sanz, J. J. (2016). Hatching asynchrony vs. foraging efficiency: The response to food availability in specialist vs. generalist tit species. Scientific Reports, 6, 37750. https://doi.org/10.1038/srep37750
Bartón, K. (2015). MuMIn: Multi-model inference (1.42.1) [computer software]. R package. http://r-forge.r-project.org/projects/mumin/
Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Becker, E., Schmidt, T. S. B., Bengs, S., Poveda, L., Opitz, L., Atrott, K., Stanzel, C., Biedermann, L., Rehman, A., Jonas, D., von Mering, C., Rogler, G., & Frey-Wagner, I. (2017). Effects of oral antibiotics and isotretinoin on the murine gut microbiota. International Journal of Antimicrobial Agents, 50(3), 342-351. https://doi.org/10.1016/j.ijantimicag.2017.03.017
Benskin, C. M. W., Rhodes, G., Pickup, R. W., Mainwaring, M. C., Wilson, K., & Hartley, I. R. (2015). Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus. Ecology and Evolution, 5(4), 821-835. https://doi.org/10.1002/ece3.1384
Berlow, M., Phillips, J. N., & Derryberry, E. P. (2021). Effects of urbanization and landscape on gut microbiomes in White-crowned sparrows. Microbial Ecology, 81(1), 253-266. https://doi.org/10.1007/s00248-020-01569-8
Berlow, M., Wada, H., & Derryberry, E. P. (2021). Experimental exposure to noise alters gut microbiota in a captive songbird. Microbial Ecology, 84, 1264-1277. https://doi.org/10.1007/s00248-021-01924-3
Bodawatta, K. H., Freiberga, I., Puzejova, K., Sam, K., Poulsen, M., & Jønsson, K. A. (2021). Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Animal Microbiome, 3(1), 20. https://doi.org/10.1186/s42523-021-00076-6
Bodawatta, K. H., Hird, S. M., Grond, K., Poulsen, M., & Jønsson, K. A. (2022). Avian gut microbiomes taking flight. Trends in Microbiology, 30(3), 268-280. https://doi.org/10.1016/j.tim.2021.07.003
Bodawatta, K. H., Klečková, I., Klečka, J., Pužejová, K., Koane, B., Poulsen, M., Jønsson, K. A., & Sam, K. (2022). Specific gut bacterial responses to natural diets of tropical birds. Scientific Reports, 12(1), 713. https://doi.org/10.1038/s41598-022-04808-9
Bodawatta, K. H., Koane, B., Maiah, G., Sam, K., Poulsen, M., & Jønsson, K. A. (2021). Species-specific but not phylosymbiotic gut microbiomes of new Guinean 2 passerines are shaped by diet and flight-associated gut modifications. Proceedings of the Royal Society B: Biological Sciences, 288, 20210446.
Bodawatta, K. H., Puzejova, K., Sam, K., Poulsen, M., & Jønsson, K. A. (2020). Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of great tits (Parus major). Animal Microbiome, 2(1), 9. https://doi.org/10.1186/s42523-020-00026-8
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. https://doi.org/10.1038/s41587-019-0209-9
Boynton, F. D. D., Ericsson, A. C., Uchihashi, M., Dunbar, M. L., & Wilkinson, J. E. (2017). Doxycycline induces dysbiosis in female C57BL/6NCrl mice. BMC Research Notes, 10(1), 644. https://doi.org/10.1186/s13104-017-2960-7
Briggs, K. B., & Deeming, D. C. (2016). Use of materials in nest construction by Pied Flycatchers Ficedula hypoleuca reflects localized habitat and geographical location. Bird Study, 63(4), 516-524. https://doi.org/10.1080/00063657.2016.1238867
Briggs, K. B., & Deeming, D. C. (2021). Localized habitat affects size and materials used in the construction of Common Redstart Phoenicurus phoenicurus nests. Bird Study, 68(1), 9-20. https://doi.org/10.1080/00063657.2021.1958197
Briggs, K. B., & Mainwaring, M. C. (2019). Experimental evidence of non-random nest material selection in pied flycatchers. Behavioural Processes, 164, 59-64. https://doi.org/10.1016/j.beproc.2019.04.008
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Chen, C.-Y., Chen, C.-K., Chen, Y.-Y., Fang, A., Shaw, G. T.-W., Hung, C.-M., & Wang, D. (2020). Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome, 8(1), 129. https://doi.org/10.1186/s40168-020-00896-9
Constable, G. W. A., Fagan, B., & Law, R. (2022). Maternal transmission as a symbiont sieve, and the absence of lactation in male mammals. https://doi.org/10.1101/2022.01.10.475639
Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics, 33(18), 2938-2940. https://doi.org/10.1093/bioinformatics/btx364
Davidson, G. L., Raulo, A., & Knowles, S. C. L. (2020). Identifying microbiome-mediated behaviour in wild vertebrates. Trends in Ecology & Evolution, 35(11), 972-980. https://doi.org/10.1016/j.tree.2020.06.014
Davidson, G. L., Somers, S. E., Wiley, N., Johnson, C. N., Reichert, M. S., Ross, R. P., Stanton, C., & Quinn, J. L. (2021). A time-lagged association between the gut microbiome, nestling weight and nestling survival in wild great tits. Journal of Animal Ecology, 90, 989-1003. https://doi.org/10.1111/1365-2656.13428
Davidson, G. L., Wiley, N., Cooke, A. C., Johnson, C. N., Fouhy, F., Reichert, M. S., de la Hera, I., Crane, J. M. S., Kulahci, I. G., Ross, R. P., Stanton, C., & Quinn, J. L. (2020). Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Scientific Reports, 10(1), 20783. https://doi.org/10.1038/s41598-020-77256-y
Devaynes, A., Antunes, A., Bedford, A., & Ashton, P. (2018). Progression in the bacterial load during the breeding season in nest boxes occupied by the blue tit and its potential impact on hatching or fledging success. Journal of Ornithology, 159(4), 1009-1017. https://doi.org/10.1007/s10336-018-1577-5
Dickens, M., Berridge, D., & Hartley, I. R. (2008). Biparental care and offspring begging strategies: Hungry nestling blue tits move towards the father. Animal Behaviour, 75(1), 167-174. https://doi.org/10.1016/j.anbehav.2007.04.024
Diez-Méndez, D., Cooper, C. B., Sanz, J. J., Verdejo, J., & Barba, E. (2021). Deconstructing incubation behaviour in response to ambient temperature over different timescales. Journal of Avian Biology, 52, jav.02781. https://doi.org/10.1111/jav.02781
Diez-Méndez, D., Sanz, J. J., & Barba, E. (2021). Impacts of ambient temperature and clutch size on incubation behaviour onset in a female-only incubator songbird. Ibis, 163(3), 1056-1071. https://doi.org/10.1111/ibi.12937
Dion-Phénix, H., Charmantier, A., de Franceschi, C., Bourret, G., Kembel, S. W., & Réale, D. (2021). Bacterial microbiota similarity between predators and prey in a blue tit trophic network. The ISME Journal, 15(4), 1098-1107. https://doi.org/10.1038/s41396-020-00836-3
Drobniak, S. M., Cichoń, M., Janas, K., Barczyk, J., Gustafsson, L., & Zagalska-Neubauer, M. (2021). Habitat shapes diversity of gut microbiomes in a wild population of blue tits Cyanistes caeruleus. Journal of Avian Biology, 2022, jav.02829. https://doi.org/10.1111/jav.02829
Dumonceaux, T. J., Hill, J. E., Hemmingsen, S. M., & Van Kessel, A. G. (2006). Characterization of intestinal microbiota and response to dietary Virginiamycin supplementation in the broiler chicken. Applied and Environmental Microbiology, 72(4), 2815-2823. https://doi.org/10.1128/AEM.72.4.2815-2823.2006
Frank, S. A. (1996). Host-symbiont conflict over the mixing of symbiotic lineages. Proceedings of the Royal Society of London Series B: Biological Sciences, 263(1368), 339-344. https://doi.org/10.1098/rspb.1996.0052
García-Navas, V., Ferrer, E. S., & Sanz, J. J. (2013). Prey choice, provisioning behaviour, and effects of early nutrition on nestling phenotype of titmice. Écoscience, 20(1), 9-18. https://doi.org/10.2980/20-1-3545
Gensollen, T., Iyer, S. S., Kasper, D. L., & Blumberg, R. S. (2016). How colonization by microbiota in early life shapes the immune system. Science, 352(6285), 539-544. https://doi.org/10.1126/science.aad9378
Gibb, J. (1950). The breeding biology of the great and blue titmice. Ibis, 92(4), 507-539. https://doi.org/10.1111/j.1474-919X.1950.tb01759.x
Goodenough, A. E., Stallwood, B., Dandy, S., Nicholson, T. E., Stubbs, H., & Coker, D. G. (2017). Like mother like nest: Similarity in microbial communities of adult female pied flycatchers and their nests. Journal of Ornithology, 158(1), 233-244. https://doi.org/10.1007/s10336-016-1371-1
Grond, K., Lanctot, R. B., Jumpponen, A., & Sandercock, B. K. (2017). Recruitment and establishment of the gut microbiome in arctic shorebirds. FEMS Microbiology Ecology, 93(12), fix142. https://doi.org/10.1093/femsec/fix142
Grond, K., Santo Domingo, J. W., Lanctot, R. B., Jumpponen, A., Bentzen, R. L., Boldenow, M. L., Brown, S. C., Casler, B., Cunningham, J. A., Doll, A. C., Freeman, S., Hill, B. L., Kendall, S. J., Kwon, E., Liebezeit, J. R., Pirie-Dominix, L., Rausch, J., & Sandercock, B. K. (2019). Composition and drivers of gut microbial communities in arctic-breeding shorebirds. Frontiers in Microbiology, 10, 2258. https://doi.org/10.3389/fmicb.2019.02258
Gwinner, H., Capilla-Lasheras, P., Cooper, C., & Helm, B. (2018). Green incubation: Avian offspring benefit from aromatic nest herbs through improved parental incubation behaviour. Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20180376. 10.1098/rspb.2018.0376
Heijtz, R. D., Wang, S., Anuar, F., Qian, Y., Bjorkholm, B., Samuelsson, A., Hibberd, M. L., Forssberg, H., & Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108(7), 3047-3052. https://doi.org/10.1073/pnas.1010529108
Herder, E. A., Spence, A. R., Tingley, M. W., & Hird, S. M. (2021). Elevation correlates with significant changes in relative abundance in hummingbird fecal microbiota, but composition changes little. Frontiers in Ecology and Evolution, 8, 597756. https://doi.org/10.3389/fevo.2020.597756
Hinde, C. A., & Kilner, R. M. (2007). Negotiations within the family over the supply of parental care. Proceedings of the Royal Society B: Biological Sciences, 274(1606), 53-60. https://doi.org/10.1098/rspb.2006.3692
Hird, S. M., Carstens, B. C., Cardiff, S. W., Dittmann, D. L., & Brumfield, R. T. (2014). Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed cowbird (Molothrus ater). PeerJ, 2, e321. https://doi.org/10.7717/peerj.321
Hird, S. M., Ganz, H., Eisen, J. A., & Boyce, W. M. (2018). The cloacal microbiome of five wild duck species varies by species and influenza a virus infection status. MSphere, 3(5), e00382. https://doi.org/10.1128/mSphere.00382-18
Jacob, S., Parthuisot, N., Vallat, A., Ramon-Portugal, F., Helfenstein, F., & Heeb, P. (2015). Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in great tits. Functional Ecology, 29(8), 1048-1058. https://doi.org/10.1111/1365-2435.12404
Jukes, T. H., & Williams, W. L. (1953). Nutritional effects of antibiotics. Pharmacological Reviews, 5(4), 381-420.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464. https://doi.org/10.1093/bioinformatics/btq166
Kempenaers, B., & Dhondt, A. A. (1991). Competition between blue and great tit for roosting sites in winter: An aviary experiment. Ornis Scandinavica, 22(1), 73-75.
Kirschman, L. J., Khadjinova, A., Ireland, K., & Milligan-Myhre, K. C. (2020). Early life disruption of the microbiota affects organ development and cytokine gene expression in Threespine stickleback. Integrative and Comparative Biology, 24, icaa136. https://doi.org/10.1093/icb/icaa136
Knights, D., Kuczynski, J., Charlson, E. S., Zaneveld, J., Mozer, M. C., Collman, R. G., Bushman, F. D., Knight, R., & Kelley, S. T. (2011). Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 8(9), 761-763. https://doi.org/10.1038/nmeth.1650
Knutie, S. A. (2020). Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. Journal of Applied Ecology, 57(3), 536-547. https://doi.org/10.1111/1365-2664.13567
Knutie, S. A., Wilkinson, C. L., Kohl, K. D., & Rohr, J. R. (2017). Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nature Communications, 8(1), 86. https://doi.org/10.1038/s41467-017-00119-0
Kohl, K. D., Brun, A., Bordenstein, S. R., Caviedes-Vidal, E., & Karasov, W. H. (2018). Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integrative Zoology, 13(2), 139-151. https://doi.org/10.1111/1749-4877.12289
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112-5120. https://doi.org/10.1128/aem.01043-13
Kreisinger, J., Kropáčková, L., Petrželková, A., Adámková, M., Tomášek, O., Martin, J.-F., Michálková, R., & Albrecht, T. (2017). Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Frontiers in Microbiology, 8, 50. https://doi.org/10.3389/fmicb.2017.00050
Lahti, L., & Shetty, S. (2017). Tools for microbiome analysis in R. (2.1.24) [computer software]. http://microbiome.github.com/microbiome
Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S., & Cavanaugh, C. M. (2019). Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin's finches on Santa Cruz Island. Scientific Reports, 9(1), 18781. https://doi.org/10.1038/s41598-019-54869-6
Lord, A. M., Mccleery, R. H., & Cresswell, W. (2011). Incubation prior to clutch completion accelerates embryonic development and so hatch date for eggs laid earlier in a clutch in the great tit Parus major. Journal of Avian Biology, 42(2), 187-191. https://doi.org/10.1111/j.1600-048X.2010.05256.x
Lucas, F. S., & Heeb, P. (2005). Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. Journal of Avian Biology, 36(6), 510-516. https://doi.org/10.1111/j.0908-8857.2005.03479.x
Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P., & Makowski, D. (2021). Performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Macke, E., Tasiemski, A., Massol, F., Callens, M., & Decaestecker, E. (2017). Life history and eco-evolutionary dynamics in light of the gut microbiota. Oikos, 126(4), 508-531. https://doi.org/10.1111/oik.03900
Mainwaring, M. C. (2017). Causes and consequences of intraspecific variation in nesting behaviors: Insights from blue tits and great tits. Frontiers in Ecology and Evolution, 5, 39. https://doi.org/10.3389/fevo.2017.00039
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
Mennerat, A., Mirleau, P., Blondel, J., Perret, P., Lambrechts, M. M., & Heeb, P. (2009). Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia, 161(4), 849-855. https://doi.org/10.1007/s00442-009-1418-6
Minot, E. O., & Perrins, C. M. (1986). Interspecific interference competition-Nest sites for blue and great tits. Journal of Animal Ecology, 55, 331-350.
Molina-Tijeras, J. A., Diez-Echave, P., Vezza, T., Hidalgo-García, L., Ruiz-Malagón, A. J., Rodríguez-Sojo, M. J., Romero, M., Robles-Vera, I., García, F., Plaza-Diaz, J., Olivares, M., Duarte, J., Rodríguez-Cabezas, M. E., Rodríguez-Nogales, A., & Gálvez, J. (2021). Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research, 167, 105471. https://doi.org/10.1016/j.phrs.2021.105471
Møller, A. P., Adriaensen, F., Artemyev, A., Bańbura, J., Barba, E., Biard, C., Blondel, J., Bouslama, Z., Bouvier, J.-C., Camprodon, J., Cecere, F., Charmantier, A., Charter, M., Cichoń, M., Cusimano, C., Czeszczewik, D., Demeyrier, V., Doligez, B., Doutrelant, C., … Lambrechts, M. M. (2014). Variation in clutch size in relation to nest size in birds. Ecology and Evolution, 4(18), 3583-3595. https://doi.org/10.1002/ece3.1189
Moore, P. R., Evenson, A., Luckey, T. D., McCoy, E., Elvehjem, C. A., & Hart, E. B. (1946). Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. Journal of Biological Chemistry, 165(2), 437-441. https://doi.org/10.1016/S0021-9258(17)41154-9
Murray, M. H., Lankau, E. W., Kidd, A. D., Welch, C. N., Ellison, T., Adams, H. C., Lipp, E. K., & Hernandez, S. M. (2020). Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS One, 15(3), e0220926. https://doi.org/10.1371/journal.pone.0220926
Naef-Daenzer, B. (2000). Patch time allocation and patch sampling by foraging great and blue tits. Animal Behaviour, 59(5), 989-999. https://doi.org/10.1006/anbe.1999.1380
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Nilsson, J.-Å. (2000). Time-dependent reproductive decisions in the blue tit. Oikos, 88(2), 351-361. https://doi.org/10.1034/j.1600-0706.2000.880214.x
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Vegan: Community ecology package (R package version 2.5-7) [computer software]. https://CRAN.R-project.org/package=vegan
Park, M. R., Shin, M., Mun, D., Jeong, S.-Y., Jeong, D.-Y., Song, M., Ko, G., Unno, T., Kim, Y., & Oh, S. (2020). Probiotic lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Scientific Reports, 10(1), 21701. https://doi.org/10.1038/s41598-020-77587-w
Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The R Journal, 10(1), 439. https://doi.org/10.32614/RJ-2018-009
Peig, J., & Green, A. J. (2009). New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos, 118(12), 1883-1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x
Pendlebury, C. J., & Bryant, D. M. (2005). Night-time behaviour of egg-laying tits. Ibis, 147(2), 342-345. https://doi.org/10.1111/j.1474-919x.2005.00409.x
Perrins, C. M. (1979). British tits. HarperCollins.
Perrins, C. M. (1991). Tits and their caterpillar food supply. Ibis, 133, 49-54. https://doi.org/10.1111/j.1474-919X.1991.tb07668.x
Petit, C., Hossaert-McKey, M., Perret, P., Blondel, J., & Lambrechts, M. M. (2002). Blue tits use selected plants and olfaction to maintain an aromatic environment for nestlings. Ecology Letters, 5(4), 585-589. https://doi.org/10.1046/j.1461-0248.2002.00361.x
Potti, J., Moreno, J., Yorio, P., Briones, V., García-Borboroglu, P., Villar, S., & Ballesteros, C. (2002). Bacteria divert resources from growth for Magellanic penguin chicks: Bacteria affect penguin chick growth. Ecology Letters, 5(6), 709-714. https://doi.org/10.1046/j.1461-0248.2002.00375.x
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(Database issue), 590-596.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.R-project.org/
Reuben, R. C., Roy, P. C., Sarkar, S. L., Alam, R.-U., & Jahid, I. K. (2019). Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiology, 19(1), 253. https://doi.org/10.1186/s12866-019-1626-0
Rodríguez, S., & Barba, E. (2016). Nestling growth is impaired by heat stress: An experimental study in a mediterranean great tit population. Zoological Studies, 55, 40. https://doi.org/10.6620/ZS.2016.55-40
Ruiz-Castellano, C., Ruiz-Rodríguez, M., Tomás, G., & Soler, J. J. (2019). Antimicrobial activity of nest-lining feathers is enhanced by breeding activity in avian nests. FEMS Microbiology Ecology, 95(5). https://doi.org/10.1093/femsec/fiz052
Santema, P., Schlicht, E., & Kempenaers, B. (2019). Testing the conditional cooperation model: What can we learn from parents taking turns when feeding offspring? Frontiers in Ecology and Evolution, 7, 94. https://doi.org/10.3389/fevo.2019.00094
Simon, K., Verwoolde, M. B., Zhang, J., Smidt, H., de Vries Reilingh, G., Kemp, B., & Lammers, A. (2016). Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens. Poultry Science, 95(7), 1543-1554. https://doi.org/10.3382/ps/pew088
Starck, J. M., & Ricklefs, R. E. (1998). Patterns of development: The Altricial-Precocial spectrum. In J. M. Starck & R. E. Ricklefs (Eds.), Avian growth and development. Evolution within the altricial-precocial spectrum (pp. 2-30). Oxford University Press.
Stauss, M. J., Burkhardt, J. F., & Tomiuk, J. (2005). Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. Journal of Avian Biology, 36(1), 47-56. https://doi.org/10.1111/j.0908-8857.2005.02855.x
Teyssier, A., Lens, L., Matthysen, E., & White, J. (2018). Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Frontiers in Microbiology, 9, 1524. https://doi.org/10.3389/fmicb.2018.01524
Teyssier, A., Matthysen, E., Hudin, N. S., de Neve, L., White, J., & Lens, L. (2020). Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proceedings of the Royal Society B: Biological Sciences, 287(1920), 20192182. https://doi.org/10.1098/rspb.2019.2182
Tremblay, I., Thomas, D., Blondel, J., Perret, P., & Lambrechts, M. M. (2004). The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican blue tits Parus caeruleus. Ibis, 147(1), 17-24. https://doi.org/10.1111/j.1474-919x.2004.00312.x
Trevelline, B. K., MacLeod, K. J., Knutie, S. A., Langkilde, T., & Kohl, K. D. (2018). In ovo microbial communities: A potential mechanism for the initial acquisition of gut microbiota among oviparous birds and lizards. Biology Letters, 14(7), 20180225. https://doi.org/10.1098/rsbl.2018.0225
Velando, A., Noguera, J. C., Aira, M., & Domínguez, J. (2021). Gut microbiome and telomere length in gull hatchlings. Biology Letters, 17(10), 20210398. https://doi.org/10.1098/rsbl.2021.0398
Wesołowski, T., & Wierzcholska, S. (2018). Tits as bryologists: Patterns of bryophyte use in nests of three species cohabiting a primeval forest. Journal of Ornithology, 159(3), 733-745. https://doi.org/10.1007/s10336-018-1535-2
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wilke, K. (2020). Streamlined Plot Theme and Plot Annotations for 'ggplot2'. https://wilkelab.org/cowplot/
Wilkin, T. A., King, L. E., & Sheldon, B. C. (2009). Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. Journal of Avian Biology, 40(2), 135-145. https://doi.org/10.1111/j.1600-048X.2009.04362.x