Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38153203
PubMed Central
PMC10788957
DOI
10.1021/acs.jpclett.3c02785
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána chemie MeSH
- lipidové dvojvrstvy * chemie MeSH
- membrány metabolismus MeSH
- peptidy chemie MeSH
- proteiny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidové dvojvrstvy * MeSH
- peptidy MeSH
- proteiny * MeSH
Curvature sensing is an essential ability of biomolecules to preferentially localize to membrane regions of a specific curvature. It has been shown that amphipathic helices (AHs), helical peptides with both hydrophilic and hydrophobic regions, could sense a positive membrane curvature. The origin of this AH sensing has been attributed to their ability to exploit lipid-packing defects that are enhanced in regions of positive curvature. In this study, we revisit an alternative framework where AHs act as sensors of local internal stress within the membrane, suggesting the possibility of an AH sensing a negative membrane curvature. Using molecular dynamics simulations, we gradually tuned the hydrophobicity of AHs, thereby adjusting their insertion depth so that the curvature preference of AHs is switched from positive to negative. This study suggests that highly hydrophobic AHs could preferentially localize proteins to regions of a negative membrane curvature.
Zobrazit více v PubMed
McMahon H. T.; Boucrot E. Membrane curvature at a glance. J. Cell Sci. 2015, 128, 1065–1070. 10.1242/jcs.114454. PubMed DOI PMC
Jarsch I. K.; Daste F.; Gallop J. L. Membrane curvature in cell biology: An integration of molecular mechanisms. J. Cell Biol. 2016, 214, 375–387. 10.1083/jcb.201604003. PubMed DOI PMC
Bigay J.; Gounon P.; Robineau S.; Antonny B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 2003, 426, 563–566. 10.1038/nature02108. PubMed DOI
Peter B. J.; Kent H. M.; Mills I. G.; Vallis Y.; Butler P. J. G.; Evans P. R.; McMahon H. T. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004, 303, 495–499. 10.1126/science.1092586. PubMed DOI
Bigay J.; Casella J.-F.; Drin G.; Mesmin B.; Antonny B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005, 24, 2244–2253. 10.1038/sj.emboj.7600714. PubMed DOI PMC
Blood P. D.; Voth G. A. Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15068–15072. 10.1073/pnas.0603917103. PubMed DOI PMC
Simunovic M.; Voth G. A.; Callan-Jones A.; Bassereau P. When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol. 2015, 25, 780–792. 10.1016/j.tcb.2015.09.005. PubMed DOI PMC
Simunovic M.; Evergren E.; Golushko I.; Prévost C.; Renard H.-F.; Johannes L.; McMahon H. T.; Lorman V.; Voth G. A.; Bassereau P. How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 11226–11231. 10.1073/pnas.1606943113. PubMed DOI PMC
Simunovic M.; Evergren E.; Callan-Jones A.; Bassereau P. Curving the cells inside and out: Roles of BAR-domain proteins in intracellular trafficking, shaping organelles, and cancer. Annu. Rev. Cell Dev. Biol. 2019, 35, 111.10.1146/annurev-cellbio-100617-060558. PubMed DOI
Drin G.; Casella J.-F.; Gautier R.; Boehmer T.; Schwartz T. U.; Antonny B. A general amphipathic α-helical motif for sensing membrane curvature. Nat. Struct. Mol. Biol. 2007, 14, 138–146. 10.1038/nsmb1194. PubMed DOI
Drin G.; Antonny B. Amphipathic helices and membrane curvature. FEBS Lett. 2010, 584, 1840–1847. 10.1016/j.febslet.2009.10.022. PubMed DOI
Kozlov M. M.; Campelo F.; Liska N.; Chernomordik L. V.; Marrink S. J.; McMahon H. T. Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 2014, 29, 53–60. 10.1016/j.ceb.2014.03.006. PubMed DOI PMC
Guo X.; Steinkühler J.; Marin M.; Li X.; Lu W.; Dimova R.; Melikyan G. B. Interferon-induced transmembrane protein 3 blocks fusion of diverse enveloped viruses by altering mechanical properties of cell membranes. ACS Nano 2021, 15, 8155–8170. 10.1021/acsnano.0c10567. PubMed DOI PMC
Cui H.; Lyman E.; Voth G. A. Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys. J. 2011, 100, 1271–1279. 10.1016/j.bpj.2011.01.036. PubMed DOI PMC
Vanni S.; Hirose H.; Barelli H.; Antonny B.; Gautier R. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 2014, 5, 4916.10.1038/ncomms5916. PubMed DOI
Vanni S.; Vamparys L.; Gautier R.; Drin G.; Etchebest C.; Fuchs P. F.; Antonny B. Amphipathic lipid packing sensor motifs: probing bilayer defects with hydrophobic residues. Biophys. J. 2013, 104, 575–584. 10.1016/j.bpj.2012.11.3837. PubMed DOI PMC
Campelo F.; McMahon H. T.; Kozlov M. M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 2008, 95, 2325–2339. 10.1529/biophysj.108.133173. PubMed DOI PMC
Campelo F.; Kozlov M. M. Sensing membrane stresses by protein insertions. PLoS Comput. Biol. 2014, 10, e100355610.1371/journal.pcbi.1003556. PubMed DOI PMC
Mandal T.; Spagnolie S. E.; Audhya A.; Cui Q. Protein-induced membrane curvature in coarse-grained simulations. Biophys. J. 2021, 120, 3211–3221. 10.1016/j.bpj.2021.05.029. PubMed DOI PMC
Risselada H. J.; Marrink S. J. Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Phys. Chem. Chem. Phys. 2009, 11, 2056–2067. 10.1039/b818782g. PubMed DOI
Yesylevskyy S. O.; Rivel T.; Ramseyer C. The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations. Sci. Rep. 2017, 7, 16078.10.1038/s41598-017-16450-x. PubMed DOI PMC
Gómez-Llobregat J.; Elías-Wolff F.; Lindén M. Anisotropic membrane curvature sensing by amphipathic peptides. Biophys. J. 2016, 110, 197–204. 10.1016/j.bpj.2015.11.3512. PubMed DOI PMC
Stroh K. S.; Risselada H. J. Quantifying Membrane Curvature Sensing of Peripheral Proteins by Simulated Buckling and Umbrella Sampling. J. Chem. Theory Comput. 2021, 17, 5276–5286. 10.1021/acs.jctc.1c00021. PubMed DOI
Jensen L. E.; Rao S.; Schuschnig M.; Cada A. K.; Martens S.; Hummer G.; Hurley J. H. Membrane curvature sensing and stabilization by the autophagic LC3 lipidation machinery. Sci. Adv. 2022, 8, eadd143610.1126/sciadv.add1436. PubMed DOI PMC
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI
Marrink S. J.; Risselada H. J.; Yefimov S.; Tieleman D. P.; De Vries A. H. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 2007, 111, 7812–7824. 10.1021/jp071097f. PubMed DOI
Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S.-J. The MARTINI coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 2008, 4, 819–834. 10.1021/ct700324x. PubMed DOI
De Jong D. H.; Singh G.; Bennett W. D.; Arnarez C.; Wassenaar T. A.; Schafer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013, 9, 687–697. 10.1021/ct300646g. PubMed DOI
Cho N.-J.; Dvory-Sobol H.; Xiong A.; Cho S.-J.; Frank C. W.; Glenn J. S. Mechanism of an amphipathic α-helical peptide’s antiviral activity involves size-dependent virus particle lysis. ACS Chem. Biol. 2009, 4, 1061–1067. 10.1021/cb900149b. PubMed DOI
Bhaskara R. M.; Grumati P.; Garcia-Pardo J.; Kalayil S.; Covarrubias-Pinto A.; Chen W.; Kudryashev M.; Dikic I.; Hummer G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 2019, 10, 2370.10.1038/s41467-019-10345-3. PubMed DOI PMC
Wimley W. C.; White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 1996, 3, 842–848. 10.1038/nsb1096-842. PubMed DOI
Sodt A. J.; Pastor R. W. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys. J. 2014, 106, 1958–1969. 10.1016/j.bpj.2014.02.037. PubMed DOI PMC
Huang J.; Rauscher S.; Nawrocki G.; Ran T.; Feig M.; De Groot B. L.; Grubmüller H.; MacKerell A. D. Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. 10.1038/nmeth.4067. PubMed DOI PMC
Souza P. C. T.; et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI
Mattila P. K.; Pykalainen A.; Saarikangas J.; Paavilainen V. O.; Vihinen H.; Jokitalo E.; Lappalainen P. Missing-in-metastasis and IRSp53 deform PI (4, 5) P2-rich membranes by an inverse BAR domain–like mechanism. J. Cell Biol. 2007, 176, 953–964. 10.1083/jcb.200609176. PubMed DOI PMC
Prévost C.; Zhao H.; Manzi J.; Lemichez E.; Lappalainen P.; Callan-Jones A.; Bassereau P. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat. Commun. 2015, 6, 8529.10.1038/ncomms9529. PubMed DOI PMC
Jackman J. A.; Costa V. V.; Park S.; Real A. L. C.; Park J. H.; Cardozo P. L.; Ferhan A. R.; Olmo I. G.; Moreira T. P.; Bambirra J. L.; et al. Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nat. Mater. 2018, 17, 971–977. 10.1038/s41563-018-0194-2. PubMed DOI
Jackman J. A.; Shi P.-Y.; Cho N.-J. Targeting the Achilles heel of mosquito-borne viruses for antiviral therapy. ACS Infect. Dis. 2019, 5, 4–8. 10.1021/acsinfecdis.8b00286. PubMed DOI
Shin S.; Ko H.; Kim C. H.; Yoon B. K.; Son S.; Lee J. A.; Shin J. M.; Lee J.; Song S. H.; Jackman J. A.; et al. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy. Nat. Mater. 2023, 22, 656.10.1038/s41563-023-01515-2. PubMed DOI
Schmidt N. W.; Wong G. C. Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Curr. Opin. Solid State Mater. Sci. 2013, 17, 151–163. 10.1016/j.cossms.2013.09.004. PubMed DOI PMC
Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations
Peptide translocation across asymmetric phospholipid membranes