Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39194157
PubMed Central
PMC11382259
DOI
10.1021/acs.jpcb.4c04338
Knihovny.cz E-zdroje
- MeSH
- adsorpce MeSH
- antimikrobiální peptidy chemie farmakologie MeSH
- buněčná membrána metabolismus chemie MeSH
- kationické antimikrobiální peptidy chemie farmakologie metabolismus MeSH
- lipidové dvojvrstvy * chemie metabolismus MeSH
- penetrační peptidy chemie metabolismus MeSH
- proteiny MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- terpeny chemie farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimikrobiální peptidy MeSH
- buforin II MeSH Prohlížeč
- kationické antimikrobiální peptidy MeSH
- lipidové dvojvrstvy * MeSH
- penetrační peptidy MeSH
- proteiny MeSH
- terpeny MeSH
Despite ongoing research on antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), their precise translocation mechanism remains elusive. This includes Buforin 2 (BF2), a well-known AMP, for which spontaneous translocation across the membrane has been proposed but a high barrier has been calculated. Here, we used computer simulations to investigate the effect of a nonequilibrium situation where the peptides are adsorbed on one side of the lipid bilayer, mimicking experimental conditions. We demonstrated that the asymmetric membrane adsorption of BF2 enhances its translocation across the lipid bilayer by lowering the energy barrier by tens of kJ mol-1. We showed that asymmetric membrane adsorption also reduced the free energy barrier of lipid flip-flop but remained unlikely even at BF2 surface saturation. These results provide insight into the driving forces behind membrane translocation of cell-penetrating peptides in nonequilibrium conditions, mimicking experiments.
Zobrazit více v PubMed
Giuliani A.; Pirri G.; Nicoletto S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci. 2007, 2, 1–33. 10.2478/s11535-007-0010-5. DOI
Di Pisa M.; Chassaing G.; Swiecicki J.-M. Translocation Mechanism(s) of Cell-Penetrating Peptides: Biophysical Studies Using Artificial Membrane Bilayers. Biochemistry 2015, 54, 194–207. 10.1021/bi501392n. PubMed DOI
Matsuzaki K. Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta, Biomembr. 1999, 1462, 1–10. 10.1016/S0005-2736(99)00197-2. PubMed DOI
Cho J. H.; Sung B. H.; Kim S. C. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta, Biomembr. 2009, 1788, 1564–1569. 10.1016/j.bbamem.2008.10.025. PubMed DOI
Cardoso M. H.; Meneguetti B. T.; Costa B. O.; Buccini D. F.; Oshiro K. G. N.; Preza S. L. E.; Carvalho C. M. E.; Migliolo L.; Franco O. L. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int. J. Mol. Sci. 2019, 20, 4877.10.3390/ijms20194877. PubMed DOI PMC
Perez J.; Rueda J.; Cuellar M.; Suarez-Arnedo A.; Cruz J. C.; Muñoz-Camargo C. Cell-Penetrating And Antibacterial BUF-II Nanobioconjugates: Enhanced Potency Via Immobilization On Polyetheramine-Modified Magnetite Nanoparticles. Int. J. Nanomed. 2019, 14, 8483–8497. 10.2147/IJN.S224286. PubMed DOI PMC
Kabelka I.; Brožek R.; Vácha R. Selecting Collective Variables and Free-Energy Methods for Peptide Translocation across Membranes. J. Chem. Inf. Model. 2021, 61, 819–830. 10.1021/acs.jcim.0c01312. PubMed DOI
Takeshima K.; Chikushi A.; Lee K.-K.; Yonehara S.; Matsuzaki K. Translocation of Analogues of the Antimicrobial Peptides Magainin and Buforin across Human Cell Membranes. J. Biol. Chem. 2003, 278, 1310–1315. 10.1074/jbc.M208762200. PubMed DOI
Lee H.; Yang S. Dimerization of cell-penetrating buforin II enhances antimicrobial properties. J Anal Sci Technol. 2021, 12, 1–7. 10.1186/s40543-021-00264-8. DOI
Elmore D. E. Insights into buforin II membrane translocation from molecular dynamics simulations. Peptides 2012, 38, 357–362. 10.1016/j.peptides.2012.09.022. PubMed DOI PMC
Kobayashi S.; Takeshima K.; Park C. B.; Kim S. C.; Matsuzaki K. Interactions of the Novel Antimicrobial Peptide Buforin 2 with Lipid Bilayers: Proline as a Translocation Promoting Factor. Biochemistry 2000, 39, 8648–8654. 10.1021/bi0004549. PubMed DOI
Park C. B.; Yi K.-S.; Matsuzaki K.; Kim M. S.; Kim S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8245–8250. 10.1073/pnas.150518097. PubMed DOI PMC
Brožek R.; Kabelka I.; Vácha R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J. Phys. Chem. B 2020, 124, 5940–5947. 10.1021/acs.jpcb.0c03291. PubMed DOI
Bechinger B.; Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim. Biophys. Acta, Biomembr. 2006, 1758, 1529–1539. 10.1016/j.bbamem.2006.07.001. PubMed DOI
Sani M.-A.; Separovic F. How Membrane-Active Peptides Get into Lipid Membranes. Acc. Chem. Res. 2016, 49, 1130–1138. 10.1021/acs.accounts.6b00074. PubMed DOI
Lee H. Heterodimer and pore formation of magainin 2 and PGLa: The anchoring and tilting of peptides in lipid bilayers. Biochim. Biophys. Acta, Biomembr. 2020, 1862, 183305.10.1016/j.bbamem.2020.183305. PubMed DOI
Bartoš L.; Vácha R. Peptide translocation across asymmetric phospholipid membranes. Biophys. J. 2024, 123, 693–702. 10.1016/j.bpj.2024.02.006. PubMed DOI PMC
Páll S.; Abraham M. J.; Kutzner C.; Hess B.; Lindahl E.. Tackling Exascale Software Challenges In Molecular Dynamics Simulations With GROMACS Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014 Springer International Publishing; 2015, 3–27..
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grünewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A.; et al. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382–388. 10.1038/s41592-021-01098-3. PubMed DOI
Wassenaar T. A.; Ingólfsson H. I.; Böckmann R. A.; Tieleman D. P.; Marrink S. J. Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 2015, 11, 2144–2155. 10.1021/acs.jctc.5b00209. PubMed DOI
Leber R.; Pachler M.; Kabelka I.; Svoboda I.; Enkoller D.; Vácha R.; Lohner K.; Pabst G. Synergism of Antimicrobial Frog Peptides Couples to Membrane Intrinsic Curvature Strain. Biophys. J. 2018, 114, 1945–1954. 10.1016/j.bpj.2018.03.006. PubMed DOI PMC
de Jong D. H.; Singh G.; Bennett W. F. D.; Arnarez C.; Wassenaar T. A.; Schäfer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9, 687–697. 10.1021/ct300646g. PubMed DOI
Parrinello M.; Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett. 1980, 45, 1196–1199. 10.1103/PhysRevLett.45.1196. DOI
Parrinello M.; Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. 10.1063/1.328693. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101.10.1063/1.2408420. PubMed DOI
Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992, 13, 1011–1021. 10.1002/jcc.540130812. DOI
Gromacs-LS v2016.3. https://www.mdstress.org/index.php/gromacs-ls/.
Brooks B.; Brooks Iii C. B.; Mackerell Jr A. M.; Nilsson L.; Petrella R.; Roux B.; Won Y.; Archontis G.; Bartels C.; Boresch S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC
Lee J.; Cheng X.; Jo S.; MacKerell A. D.; Klauda J. B.; Im W. CHARMM-GUI Input Generator for NAMD, Gromacs, Amber, Openmm, and CHARMM/OpenMM Simulations using the CHARMM36 Additive Force Field. Biophys. J. 2016, 110, 641a.10.1016/j.bpj.2015.11.3431. PubMed DOI PMC
Wu E. L.; Cheng X.; Jo S.; Rui H.; Song K. C.; Dávila-Contreras E. M.; Qi Y.; Lee J.; Monje-Galvan V.; Venable R. M.; et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. 10.1002/jcc.23702. PubMed DOI PMC
Case D.; Ben-Shalom I.; Brozell S.; Cerutti D.; Cheatham T.; Cruzeiro V.; Darden T.; Duke R.; Ghoreishi D.; Gilson M., et al.. AMBER 2018. University Of California. 2018.
Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. 10.1063/1.448118. DOI
Evans D. J.; Holian B. L. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. 10.1063/1.449071. DOI
Laadhari M.; Arnold A. A.; Gravel A. E.; Separovic F.; Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solid-state NMR. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2959–2964. 10.1016/j.bbamem.2016.09.009. PubMed DOI