Effect of helical kink in antimicrobial peptides on membrane pore formation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GA17-11571S
Czech Science Foundation
19-26854X
Czech Science Foundation
LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
LM2015070
Ministry of Education, Youth and Sports of the Czech Republic
LM2015085
Ministry of Education, Youth and Sports of the Czech Republic
LM2015042
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32167466
PubMed Central
PMC7069690
DOI
10.7554/elife.47946
PII: 47946
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotics, fluorescent probes, membrane structure, membrane transport, molecular biophysics, none, structural biology,
- MeSH
- biologické modely MeSH
- buněčná membrána chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- kationické antimikrobiální peptidy chemie metabolismus MeSH
- konformace proteinů * MeSH
- metoda Monte Carlo MeSH
- molekulární modely MeSH
- poriny chemie metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kationické antimikrobiální peptidy MeSH
- poriny MeSH
Every cell is protected by a semipermeable membrane. Peptides with the right properties, for example Antimicrobial peptides (AMPs), can disrupt this protective barrier by formation of leaky pores. Unfortunately, matching peptide properties with their ability to selectively form pores in bacterial membranes remains elusive. In particular, the proline/glycine kink in helical peptides was reported to both increase and decrease antimicrobial activity. We used computer simulations and fluorescence experiments to show that a kink in helices affects the formation of membrane pores by stabilizing toroidal pores but disrupting barrel-stave pores. The position of the proline/glycine kink in the sequence further controls the specific structure of toroidal pore. Moreover, we demonstrate that two helical peptides can form a kink-like connection with similar behavior as one long helical peptide with a kink. The provided molecular-level insight can be utilized for design and modification of pore-forming antibacterial peptides or toxins.
CEITEC Central European Institute of Technology Masaryk University Kamenice Czech Republic
J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Alouf JE, Dufourcq J, Siffert O, Thiaudiere E, Geoffroy C. Interaction of staphylococcal delta-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. biological and physical properties of the amphipathic peptides. European Journal of Biochemistry. 1989;183:381–390. doi: 10.1111/j.1432-1033.1989.tb14939.x. PubMed DOI
Amos ST, Vermeer LS, Ferguson PM, Kozlowska J, Davy M, Bui TT, Drake AF, Lorenz CD, Mason AJ. Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to Gram-negative bacterial inner membranes. Scientific Reports. 2016;6:37639. doi: 10.1038/srep37639. PubMed DOI PMC
Arias M. Calorimetry methods to study membrane interactions and perturbations induced by antimicrobial host defense peptides. Methods in Molecular Biology. 2016;1548:119–140. doi: 10.1007/978-1-4939-6737-7_9. PubMed DOI
Bennett WFD, Sapay N, Tieleman DP. Atomistic simulations of pore formation and closure in lipid bilayers. Biophysical Journal. 2014;106:210–219. doi: 10.1016/j.bpj.2013.11.4486. PubMed DOI PMC
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. Journal of Biological Chemistry. 2005;280:12316–12329. doi: 10.1074/jbc.M413406200. PubMed DOI PMC
Chen CH, Starr CG, Troendle E, Wiedman G, Wimley WC, Ulmschneider JP, Ulmschneider MB. Simulation-Guided rational de novo design of a small Pore-Forming antimicrobial peptide. Journal of the American Chemical Society. 2019;141:4839–4848. doi: 10.1021/jacs.8b11939. PubMed DOI
Cheng JTJ, Hale JD, Elliott M, Hancock REW, Straus SK. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2011;1808:622–633. doi: 10.1016/j.bbamem.2010.11.025. PubMed DOI
Clejan S, Krulwich TA, Mondrus KR, Seto-Young D. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. Journal of Bacteriology. 1986;168:334–340. doi: 10.1128/JB.168.1.334-340.1986. PubMed DOI PMC
Cooke IR, Deserno M. Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. The Journal of Chemical Physics. 2005;123:224710. doi: 10.1063/1.2135785. PubMed DOI
Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, Nakajima T. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochemical Journal. 2001;359:35–45. doi: 10.1042/bj3590035. PubMed DOI PMC
Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 1999;1462:71–87. doi: 10.1016/S0005-2736(99)00201-1. PubMed DOI
Dhople VM, Nagaraj R. Conformation and activity of delta-lysin and its analogs. Peptides. 2005;26:217–225. doi: 10.1016/j.peptides.2004.09.013. PubMed DOI
Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides. Chemical Reviews. 2019;119:10241–10287. doi: 10.1021/acs.chemrev.9b00008. PubMed DOI PMC
Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry. 2014;6:25–64. doi: 10.4137/PMC.S14459. PubMed DOI PMC
Falco A, Ortega-Villaizan M, Chico V, Brocal I, Perez L, Coll JM, Estepa A. Antimicrobial peptides as model molecules for the development of novel antiviral agents in aquaculture. Mini Reviews in Medicinal Chemistry. 2009;9:1159–1164. doi: 10.2174/138955709789055171. PubMed DOI
Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discovery Today. 2015;20:122–128. doi: 10.1016/j.drudis.2014.10.003. PubMed DOI
Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review. Frontiers in Microbiology. 2013;4:294. doi: 10.3389/fmicb.2013.00294. PubMed DOI PMC
Gehman JD, Luc F, Hall K, Lee TH, Boland MP, Pukala TL, Bowie JH, Aguilar MI, Separovic F. Effect of antimicrobial peptides from australian tree frogs on anionic phospholipid membranes. Biochemistry. 2008;47:8557–8565. doi: 10.1021/bi800320v. PubMed DOI
Grau-Campistany A, Strandberg E, Wadhwani P, Reichert J, Bürck J, Rabanal F, Ulrich AS. Hydrophobic mismatch demonstrated for membranolytic peptides and their use as molecular rulers to measure bilayer thickness in native cells. Scientific Reports. 2015;5:09388. doi: 10.1038/srep09388. PubMed DOI PMC
Guha S, Ghimire J, Wu E, Wimley WC. Mechanistic landscape of Membrane-Permeabilizing peptides. Chemical Reviews. 2019;119:6040–6085. doi: 10.1021/acs.chemrev.8b00520. PubMed DOI PMC
Hamann S. Measurement of cell volume changes by fluorescence self-quenching. Journal of Fluorescence. 2002;12:139–145. doi: 10.1023/A:1016832027325. DOI
Henderson JM, Waring AJ, Separovic F, Lee KYC. Antimicrobial peptides share a common interaction driven by membrane line tension reduction. Biophysical Journal. 2016;111:2176–2189. doi: 10.1016/j.bpj.2016.10.003. PubMed DOI PMC
Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2008;1778:357–375. doi: 10.1016/j.bbamem.2007.11.008. PubMed DOI PMC
Huang HW, Wu Y. Lipid-alamethicin interactions influence alamethicin orientation. Biophysical Journal. 1991;60:1079–1087. doi: 10.1016/S0006-3495(91)82144-0. PubMed DOI PMC
Illya G, Deserno M. Coarse-grained simulation studies of peptide-induced pore formation. Biophysical Journal. 2008;95:4163–4173. doi: 10.1529/biophysj.108.131300. PubMed DOI PMC
Jacob J, Duclohier H, Cafiso DS. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Biophysical Journal. 1999;76:1367–1376. doi: 10.1016/S0006-3495(99)77298-X. PubMed DOI PMC
Janzon L, Löfdahl S, Arvidson S. Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Molecular and General Genetics MGG. 1989;219:480–485. doi: 10.1007/BF00259623. PubMed DOI
Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational Chemistry. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Jung JS, Preston GM, Smith BL, Guggino WB, Agre P. Molecular structure of the water channel through aquaporin chip. the hourglass model. The Journal of Biological Chemistry. 1994;269:14648–14654. PubMed
Kabelka I, Vácha R. Optimal conditions for opening of membrane pore by amphiphilic peptides. The Journal of Chemical Physics. 2015;143:243115. doi: 10.1063/1.4933229. PubMed DOI
Kabelka I, Vácha R. Optimal hydrophobicity and reorientation of amphiphilic peptides translocating through membrane. Biophysical Journal. 2018;115:1045–1054. doi: 10.1016/j.bpj.2018.08.012. PubMed DOI PMC
Kaiser ET, Kézdy FJ. Secondary structures of proteins and peptides in amphiphilic environments. (A review) PNAS. 1983;80:1137–1143. doi: 10.1073/pnas.80.4.1137. PubMed DOI PMC
Kirsch SA, Böckmann RA. Membrane pore formation in atomistic and coarse-grained simulations. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2016;1858:2266–2277. doi: 10.1016/j.bbamem.2015.12.031. PubMed DOI
Kobayashi S, Takeshima K, Park CB, Kim SC, Matsuzaki K. Interactions of the novel antimicrobial peptide buforin 2 with lipid bilayers: proline as a translocation promoting factor. Biochemistry. 2000;39:8648–8654. doi: 10.1021/bi0004549. PubMed DOI
Kozic M, Fox SJ, Thomas JM, Verma CS, Rigden DJ. Large scale ab initio modeling of structurally uncharacterized antimicrobial peptides reveals known and novel folds. Proteins: Structure, Function, and Bioinformatics. 2018;86:548–565. doi: 10.1002/prot.25473. PubMed DOI
Krauson AJ, Hall OM, Fuselier T, Starr CG, Kauffman WB, Wimley WC. Conformational Fine-Tuning of Pore-Forming peptide potency and selectivity. Journal of the American Chemical Society. 2015;137:16144–16152. doi: 10.1021/jacs.5b10595. PubMed DOI PMC
Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE, Moir RD. Amyloid-β peptide protects against microbial infection in mouse and worm models of alzheimer's disease. Science Translational Medicine. 2016;8:340ra72. doi: 10.1126/scitranslmed.aaf1059. PubMed DOI PMC
Kumar P, Kizhakkedathu J, Straus S. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8:4. doi: 10.3390/biom8010004. PubMed DOI PMC
Lear JD, Wasserman ZR, DeGrado WF. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988;240:1177–1181. doi: 10.1126/science.2453923. PubMed DOI
Leber R, Pachler M, Kabelka I, Svoboda I, Enkoller D, Vácha R, Lohner K, Pabst G. Synergism of antimicrobial frog peptides couples to membrane intrinsic curvature strain. Biophysical Journal. 2018;114:1945–1954. doi: 10.1016/j.bpj.2018.03.006. PubMed DOI PMC
Lee MT, Chen FY, Huang HW. Energetics of pore formation induced by membrane active peptides. Biochemistry. 2004;43:3590–3599. doi: 10.1021/bi036153r. PubMed DOI
Lee C-C, Sun Y, Chen C-W, Qian S, Huang HW. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophysical Journal. 2011;100:336a. doi: 10.1016/j.bpj.2010.12.2039. PubMed DOI PMC
Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS, Park Y. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLOS ONE. 2013;8:e67597. doi: 10.1371/journal.pone.0067597. PubMed DOI PMC
Leontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. Journal of the American Chemical Society. 2006;128:12156–12161. doi: 10.1021/ja062927q. PubMed DOI
Lim SS, Kim Y, Park Y, Kim JI, Park IS, Hahm KS, Shin SY. The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide. Biochemical and Biophysical Research Communications. 2005;334:1329–1335. doi: 10.1016/j.bbrc.2005.07.029. PubMed DOI
Liu L, Fang Y, Huang Q, Wu J. A rigidity-enhanced antimicrobial activity: a case for linear cationic α-helical peptide HP(2-20) and its four analogues. PLOS ONE. 2011;6:e16441. doi: 10.1371/journal.pone.0016441. PubMed DOI PMC
Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996;35:13723–13728. doi: 10.1021/bi9620621. PubMed DOI
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology. 2016;6:194. doi: 10.3389/fcimb.2016.00194. PubMed DOI PMC
Matsuzaki K, Sugishita K, Fujii N, Miyajima K. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry. 1995;34:3423–3429. doi: 10.1021/bi00010a034. PubMed DOI
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochimica Et Biophysica Acta (BBA) - Reviews on Biomembranes. 1998a;1376:391–400. doi: 10.1016/S0304-4157(98)00014-8. PubMed DOI
Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry. 1998b;37:11856–11863. doi: 10.1021/bi980539y. PubMed DOI
Mayer LD, Hope MJ, Cullis PR, Janoff AS. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 1985;817:193–196. doi: 10.1016/0005-2736(85)90084-7. PubMed DOI
Mihajlovic M, Lazaridis T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2012;1818:1274–1283. doi: 10.1016/j.bbamem.2012.01.016. PubMed DOI PMC
Miyazaki Y, Okazaki S, Shinoda W. Free energy analysis of membrane pore formation process in the presence of multiple melittin peptides. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2019;1861:1409–1419. doi: 10.1016/j.bbamem.2019.03.002. PubMed DOI
Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ. The MARTINI Coarse-Grained force field: extension to proteins. Journal of Chemical Theory and Computation. 2008;4:819–834. doi: 10.1021/ct700324x. PubMed DOI
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–68. doi: 10.1038/nature17625. PubMed DOI PMC
Nayar R, Hope MJ, Cullis PR. Generation of large unilamellar vesicles from long-chain saturated phosphatidylcholines by extrusion technique. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 1989;986:200–206. doi: 10.1016/0005-2736(89)90468-9. DOI
Nelson DW, Moore JE, Rao JR. Antimicrobial resistance (AMR): significance to food quality and safety. Food Quality and Safety. 2019;3:15–22. doi: 10.1093/fqsafe/fyz003. DOI
Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E. Lecture Notes in Computer Science. Vol. 27. Springer International Publishing; 2015. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. DOI
Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide Buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications. 1998;244:253–257. doi: 10.1006/bbrc.1998.8159. PubMed DOI
Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. PNAS. 2000;97:8245–8250. doi: 10.1073/pnas.150518097. PubMed DOI PMC
Park SH, Kim HE, Kim CM, Yun HJ, Choi EC, Lee BJ. Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5. Biochemical Journal. 2002;368:171–182. doi: 10.1042/bj20020385. PubMed DOI PMC
Park S-C, Kim M-H, Hossain MA, Shin SY, Kim Y, Stella L, Wade JD, Park Y, Hahm K-S. Amphipathic α-helical peptide, HP (2–20), and its analogues derived from Helicobacter pylori: Pore formation mechanism in various lipid compositions. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2008;1778:229–241. doi: 10.1016/j.bbamem.2007.09.020. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLOS Pathogens. 2010;6:e1001067. doi: 10.1371/journal.ppat.1001067. PubMed DOI PMC
Pollard HB, Arispe N, Rojas E. Ion channel hypothesis for alzheimer amyloid peptide neurotoxicity. Cellular and Molecular Neurobiology. 1995;15:513–526. doi: 10.1007/BF02071314. PubMed DOI
Rodríguez A, Villegas E, Montoya-Rosales A, Rivas-Santiago B, Corzo G. Characterization of antibacterial and hemolytic activity of synthetic pandinin 2 variants and their inhibition against Mycobacterium tuberculosis. PLOS ONE. 2014;9:e101742. doi: 10.1371/journal.pone.0101742. PubMed DOI PMC
Salnikov ES, Bechinger B. Lipid-controlled peptide topology and interactions in bilayers: structural insights into the synergistic enhancement of the antimicrobial activities of PGLa and magainin 2. Biophysical Journal. 2011;100:1473–1480. doi: 10.1016/j.bpj.2011.01.070. PubMed DOI PMC
Santo KP, Irudayam SJ, Berkowitz ML. Melittin creates transient pores in a lipid bilayer: results from computer simulations. The Journal of Physical Chemistry B. 2013;117:5031–5042. doi: 10.1021/jp312328n. PubMed DOI
Santo KP, Berkowitz ML. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: results from coarse-grained simulations. The Journal of Physical Chemistry B. 2012;116:3021–3030. doi: 10.1021/jp212018f. PubMed DOI
Schiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal. 1967;7:121–135. doi: 10.1016/S0006-3495(67)86579-2. PubMed DOI PMC
Sengupta D, Leontiadou H, Mark AE, Marrink S-J. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2008;1778:2308–2317. doi: 10.1016/j.bbamem.2008.06.007. PubMed DOI
Shin SY, Lee SH, Yang ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI. Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18 and its analogs. Journal of Peptide Research. 2001;58:504–514. doi: 10.1034/j.1399-3011.2001.00934.x. PubMed DOI
Strandberg E, Horn D, Reißer S, Zerweck J, Wadhwani P, Ulrich AS. 2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and its synergy with PGLa. Biophysical Journal. 2016;111:2149–2161. doi: 10.1016/j.bpj.2016.10.012. PubMed DOI PMC
Suh JY, Lee KH, Chi SW, Hong SY, Choi BW, Moon HM, Choi BS. Unusually stable helical kink in the antimicrobial peptide--a derivative of gaegurin. FEBS Letters. 1996;392:309–312. doi: 10.1016/0014-5793(96)00840-x. PubMed DOI
Suh JY, Lee YT, Park CB, Lee KH, Kim SC, Choi BS. Structural and functional implications of a proline residue in the antimicrobial peptide gaegurin. European Journal of Biochemistry. 1999;266:665–674. doi: 10.1046/j.1432-1327.1999.00917.x. PubMed DOI
Sukeník L, Mirek J, Vacha R. GitHub; 2020. https://github.com/robertvacha/SC
Tamba Y, Ariyama H, Levadny V, Yamazaki M. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. The Journal of Physical Chemistry B. 2010;114:12018–12026. doi: 10.1021/jp104527y. PubMed DOI
Tesei G, Vazdar M, Jensen MR, Cragnell C, Mason PE, Heyda J, Skepö M, Jungwirth P, Lund M. Self-association of a highly charged arginine-rich cell-penetrating peptide. PNAS. 2017;114:11428–11433. doi: 10.1073/pnas.1712078114. PubMed DOI PMC
Tieleman DP, Shrivastava IH, Ulmschneider MR, Sansom MS. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins: Structure, Function, and Genetics. 2001;44:63–72. doi: 10.1002/prot.1073. PubMed DOI
Turner J, Cho Y, Dinh N-N, Waring AJ, Lehrer RI. Activities of LL-37, a Cathelin-Associated antimicrobial peptide of human neutrophils. Antimicrobial Agents and Chemotherapy. 1998;42:2206–2214. doi: 10.1128/AAC.42.9.2206. PubMed DOI PMC
Vácha R, Frenkel D. Relation between molecular shape and the morphology of self-assembling aggregates: a simulation study. Biophysical Journal. 2011;101:1432–1439. doi: 10.1016/j.bpj.2011.07.046. PubMed DOI PMC
Vácha R, Frenkel D. Simulations suggest possible novel membrane pore structure. Langmuir. 2013;30:1304–1310. doi: 10.1021/la402727a. PubMed DOI
Vácha R, Frenkel D. Stability of bicelles: a simulation study. Langmuir. 2014;30:4229–4235. doi: 10.1021/la4048159. PubMed DOI
van der Does AM, Hiemstra PS, Mookherjee N. Antimicrobial host defence peptides: immunomodulatory functions and translational prospects. Advances in Experimental Medicine and Biology. 2019;1117:149–171. doi: 10.1007/978-981-13-3588-4_10. PubMed DOI
Vanhoof G, Goossens F, De Meester I, Hendriks D, Scharpé S. Proline motifs in peptides and their biological processing. The FASEB Journal. 1995;9:736–744. doi: 10.1096/fasebj.9.9.7601338. PubMed DOI
Vermeer LS, Lan Y, Abbate V, Ruh E, Bui TT, Wilkinson LJ, Kanno T, Jumagulova E, Kozlowska J, Patel J, McIntyre CA, Yam WC, Siu G, Atkinson RA, Lam JK, Bansal SS, Drake AF, Mitchell GH, Mason AJ. Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic α-helical peptides. Journal of Biological Chemistry. 2012;287:34120–34133. doi: 10.1074/jbc.M112.359067. PubMed DOI PMC
Wakamatsu K, Takeda A, Tachi T, Matsuzaki K. Dimer structure of magainin 2 bound to phospholipid vesicles. Biopolymers. 2002;64:314–327. doi: 10.1002/bip.10198. PubMed DOI
Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research. 2015;44:D1087–D1093. doi: 10.1093/nar/gkv1278. PubMed DOI PMC
Wang ZJ, Frenkel D. Pore nucleation in mechanically stretched bilayer membranes. The Journal of Chemical Physics. 2005;123:154701. doi: 10.1063/1.2060666. PubMed DOI
Wang F, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Physical Review Letters. 2001;86:2050–2053. doi: 10.1103/PhysRevLett.86.2050. PubMed DOI
WHO . Antimicrobial Resistance. World Health Organization; 2017. https://www.who.int/antimicrobial-resistance/en/
Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology. 2010;5:905–917. doi: 10.1021/cb1001558. PubMed DOI PMC
Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2016;1858:546–566. doi: 10.1016/j.bbamem.2015.11.003. PubMed DOI
Xiao Y, Herrera AI, Bommineni YR, Soulages JL, Prakash O, Zhang G. The central kink region of fowlicidin-2, an alpha-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. Journal of Innate Immunity. 2009;1:268–280. doi: 10.1159/000174822. PubMed DOI PMC
Xie Y, Fleming E, Chen JL, Elmore DE. Effect of proline position on the antimicrobial mechanism of buforin II. Peptides. 2011;32:677–682. doi: 10.1016/j.peptides.2011.01.010. PubMed DOI PMC
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-Stave model or toroidal model? A case study on melittin pores. Biophysical Journal. 2001;81:1475–1485. doi: 10.1016/S0006-3495(01)75802-X. PubMed DOI PMC
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. PubMed DOI
Zhang L, Rozek A, Hancock RE. Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry. 2001;276:35714–35722. doi: 10.1074/jbc.M104925200. PubMed DOI
Zhou X-R, Zhang Q, Tian X-B, Cao Y-M, Liu Z-Q, Fan R, Ding X-F, Zhu Z, Chen L, Luo S-Z. From a pro-apoptotic peptide to a lytic peptide: one single residue mutation. Biochimica Et Biophysica Acta (BBA) - Biomembranes. 2016;1858:1914–1925. doi: 10.1016/j.bbamem.2016.05.012. PubMed DOI