Serum neurofilament light chain levels at attack predict post-attack disability worsening and are mitigated by inebilizumab: analysis of four potential biomarkers in neuromyelitis optica spectrum disorder
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem
PubMed
37221052
PubMed Central
PMC10447388
DOI
10.1136/jnnp-2022-330412
PII: jnnp-2022-330412
Knihovny.cz E-zdroje
- Klíčová slova
- CLINICAL NEUROLOGY, RANDOMISED TRIALS,
- MeSH
- biologické markery MeSH
- dvojitá slepá metoda MeSH
- humanizované monoklonální protilátky terapeutické užití MeSH
- lidé MeSH
- neuromyelitis optica * krev farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- biologické markery MeSH
- humanizované monoklonální protilátky MeSH
- inebilizumab MeSH Prohlížeč
OBJECTIVE: To investigate relationships between serum neurofilament light chain (sNfL), ubiquitin C-terminal hydrolase L1 (sUCHL1), tau (sTau) and glial fibrillary acidic protein (sGFAP) levels and disease activity/disability in neuromyelitis optica spectrum disorder (NMOSD), and the effects of inebilizumab on these biomarkers in N-MOmentum. METHODS: N-MOmentum randomised participants to receive inebilizumab or placebo with a randomised controlled period (RCP) of 28 weeks and an open-label follow-up period of ≥2 years. The sNfL, sUCHL1, sTau and sGFAP were measured using single-molecule arrays in 1260 scheduled and attack-related samples from N-MOmentum participants (immunoglobulin G (IgG) autoantibodies to aquaporin-4-positive, myelin oligodendrocyte glycoprotein-IgG-positive or double autoantibody-negative) and two control groups (healthy donors and patients with relapsing-remitting multiple sclerosis). RESULTS: The concentration of all four biomarkers increased during NMOSD attacks. At attack, sNfL had the strongest correlation with disability worsening during attacks (Spearman R2=0.40; p=0.01) and prediction of disability worsening after attacks (sNfL cut-off 32 pg/mL; area under the curve 0.71 (95% CI 0.51 to 0.89); p=0.02), but only sGFAP predicted upcoming attacks. At RCP end, fewer inebilizumab-treated than placebo-treated participants had sNfL>16 pg/mL (22% vs 45%; OR 0.36 (95% CI 0.17 to 0.76); p=0.004). CONCLUSIONS: Compared with sGFAP, sTau and sUCHL1, sNfL at attack was the strongest predictor of disability worsening at attack and follow-up, suggesting a role for identifying participants with NMOSD at risk of limited post-relapse recovery. Treatment with inebilizumab was associated with lower levels of sGFAP and sNfL than placebo. TRIAL REGISTRATION NUMBER: NCT02200770.
Brain and Mind Centre University of Sydney Sydney New South Wales Australia
Department of Biostatistics University of Alabama at Birmingham Birmingham Alabama USA
Department of Multiple Sclerosis Therapeutics Fukushima Medical University Koriyama Fukushima Japan
Department of Neurology Mayo Clinic Scottsdale Arizona USA
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Department of Neurology Medical University Vienna Vienna Austria
Department of Neurology Palacky University in Olomouc Olomouc Czech Republic
Department of Neurology University of Virginia Charlottesville Virginia USA
Zobrazit více v PubMed
Cree BA, Bennett JL, Sheehan M, et al. . Placebo-controlled study in neuromyelitis optica—ethical and design considerations. Mult Scler 2016;22:862–72. 10.1177/1352458515620934 PubMed DOI PMC
Fujihara K, Misu T, Nakashima I, et al. . Neuromyelitis optica should be classified as an astrocytopathic disease rather than a demyelinating disease. Clin Exp Neuroimmunol 2012;3:58–73. 10.1111/j.1759-1961.2012.00030.x Available: http://doi.wiley.com/10.1111/cen3.2012.3.issue-2 DOI
Wingerchuk DM, Pittock SJ, Lucchinetti CF, et al. . A secondary progressive clinical course is uncommon in neuromyelitis optica. Neurology 2007;68:603–5. 10.1212/01.wnl.0000254502.87233.9a PubMed DOI
Jarius S, Paul F, Weinshenker BG, et al. . Neuromyelitis optica. Nat Rev Dis Primers 2020;6:85. 10.1038/s41572-020-0214-9 PubMed DOI
Li J, Bazzi SA, Schmitz F, et al. . Molecular level characterization of circulating aquaporin-4 antibodies in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm 2021;8:e1034. 10.1212/NXI.0000000000001034 PubMed DOI PMC
Duan T, Smith AJ, Verkman AS. Complement-independent bystander injury in AQP4-igG seropositive neuromyelitis optica produced by antibody-dependent cellular cytotoxicity. Acta Neuropathol Commun 2019;7:112. 10.1186/s40478-019-0766-7 PubMed DOI PMC
Herwerth M, Kenet S, Schifferer M, et al. . A new form of axonal pathology in a spinal model of neuromyelitis optica. Brain 2022;145:1726–42. 10.1093/brain/awac079 PubMed DOI PMC
Yick L-W, Ma OK-F, Ng RC-L, et al. . Aquaporin-4 autoantibodies from neuromyelitis optica spectrum disorder patients induce complement-independent immunopathologies in mice. Front Immunol 2018;9:1438.:. 10.3389/fimmu.2018.01438 PubMed DOI PMC
Takeshita Y, Fujikawa S, Serizawa K, et al. . New BBB model reveals that IL-6 blockade suppressed the BBB disorder, preventing onset of NMOSD. Neurol Neuroimmunol Neuroinflamm 2021;8:e1076. 10.1212/NXI.0000000000001076 PubMed DOI PMC
Polivka J, Polivka J Jr, Krakorova K, et al. . Current status of biomarker research in neurology. EPMA J 2016;7:14. 10.1186/s13167-016-0063-5 PubMed DOI PMC
Misu T, Takano R, Fujihara K, et al. . Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: an astrocytic damage marker. J Neurol Neurosurg Psychiatry 2009;80:575–7. 10.1136/jnnp.2008.150698 PubMed DOI
Chang X, Huang W, Wang L, et al. . Serum neurofilament light and GFAP are associated with disease severity in inflammatory disorders with aquaporin-4 or myelin oligodendrocyte glycoprotein antibodies. Front Immunol 2021;12:647618. 10.3389/fimmu.2021.647618 PubMed DOI PMC
Watanabe M, Nakamura Y, Michalak Z, et al. . Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 2019;93:e1299–311. 10.1212/WNL.0000000000008160 PubMed DOI
Aktas O, Smith MA, Rees WA, et al. . Serum glial fibrillary acidic protein: a neuromyelitis optica spectrum disorder biomarker. Ann Neurol 2021;89:895–910. 10.1002/ana.26067 PubMed DOI PMC
Lycke JN, Karlsson JE, Andersen O, et al. . Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998;64:402–4. 10.1136/jnnp.64.3.402 PubMed DOI PMC
Forgrave LM, Ma M, Best JR, et al. . The diagnostic performance of neurofilament light chain in CSF and blood for alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimers Dement (Amst) 2019;11:730–43. 10.1016/j.dadm.2019.08.009 PubMed DOI PMC
Bäckström D, Linder J, Jakobson Mo S, et al. . Nfl as a biomarker for neurodegeneration and survival in Parkinson disease. Neurology 2020;95:e827–38. 10.1212/WNL.0000000000010084 PubMed DOI PMC
Gaetani L, Blennow K, Calabresi P, et al. . Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 2019;90:870–81. 10.1136/jnnp-2018-320106 PubMed DOI
Lin T-Y, Vitkova V, Asseyer S, et al. . Increased serum neurofilament light and thin ganglion cell-inner plexiform layer are additive risk factors for disease activity in early multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2021;8:e1051. 10.1212/NXI.0000000000001051 PubMed DOI PMC
Hallengren J, Chen PC, Wilson SM. Neuronal ubiquitin homeostasis. Cell Biochem Biophys 2013;67:67–73. 10.1007/s12013-013-9634-4 PubMed DOI PMC
Barbier P, Zejneli O, Martinho M, et al. . Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci 2019;11:204. 10.3389/fnagi.2019.00204 PubMed DOI PMC
Mondello S, Palmio J, Streeter J, et al. . Ubiquitin carboxy-terminal hydrolase l1 (uch-l1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol 2012;12:85. 10.1186/1471-2377-12-85 PubMed DOI PMC
Cree BAC, Bennett JL, Kim HJ, et al. . Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:1352–63. 10.1016/S0140-6736(19)31817-3 PubMed DOI
Agius MA, Klodowska-Duda G, Maciejowski M, et al. . Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult Scler 2019;25:235–45. 10.1177/1352458517740641 PubMed DOI PMC
Sechi E, Buciuc M, Pittock SJ, et al. . Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing. JAMA Neurol 2021;78:741–6. 10.1001/jamaneurol.2021.0912 PubMed DOI PMC
Wingerchuk DM, Hogancamp WF, O’Brien PC, et al. . The clinical course of neuromyelitis optica (Devic’s syndrome). Neurology 1999;53:1107–14. 10.1212/wnl.53.5.1107 PubMed DOI
Pittock SJ, Lennon VA, McKeon A, et al. . Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol 2013;12:554–62. 10.1016/S1474-4422(13)70076-0 PubMed DOI
Marignier R, Bennett JL, Kim HJ, et al. . Disability outcomes in the N-MOmentum trial of inebilizumab in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm 2021;8:e978. 10.1212/NXI.0000000000000978 PubMed DOI PMC
Abdelhak A, Huss A, Kassubek J, et al. . Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep 2018;8:14798. 10.1038/s41598-018-33158-8 PubMed DOI PMC
Czeiter E, Amrein K, Gravesteijn BY, et al. . Blood biomarkers on admission in acute traumatic brain injury: relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 2020;56:102785. 10.1016/j.ebiom.2020.102785 PubMed DOI PMC
Marshall WJ, Bangert SK. Clinical biochemistry: metabolic and clinical aspects. 2nd edition. Churchill Livingstone, 2008.
Kimbrough DJ, Fujihara K, Jacob A, et al. . Treatment of neuromyelitis optica: review and recommendations. Mult Scler Relat Disord 2012;1:180–7. 10.1016/j.msard.2012.06.002 PubMed DOI PMC
Kleiter I, Gahlen A, Borisow N, et al. . Neuromyelitis optica: evaluation of 871 attacks and 1,153 treatment courses. Ann Neurol 2016;79:206–16. 10.1002/ana.24554 PubMed DOI
Trebst C, Jarius S, Berthele A, et al. . Update on the diagnosis and treatment of Neuromyelitis Optica: recommendations of the neuromyelitis optica Study Group (NEMOS). J Neurol 2014;261:1–16. 10.1007/s00415-013-7169-7 PubMed DOI PMC
Kleiter I, Gahlen A, Borisow N, et al. . Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm 2018;5:e504. 10.1212/NXI.0000000000000504 PubMed DOI PMC
Oertel FC, Havla J, Roca-Fernández A, et al. . Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiatry 2018;89:1259–65. 10.1136/jnnp-2018-318382 PubMed DOI
Ringelstein M, Harmel J, Zimmermann H, et al. . Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology 2020;94:e407–18. 10.1212/WNL.0000000000008684 PubMed DOI
Hyun J-W, Kim Y, Kim SY, et al. . Investigating the presence of interattack astrocyte damage in neuromyelitis optica spectrum disorder: longitudinal analysis of serum glial fibrillary acidic protein. Neurol Neuroimmunol Neuroinflamm 2021;8:e965. 10.1212/NXI.0000000000000965 PubMed DOI PMC
Schindler P, Grittner U, Oechtering J, et al. . Serum GFAP and NFL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neuroinflammation 2021;18:105. 10.1186/s12974-021-02138-7 PubMed DOI PMC
Barro C, Healy BC, Liu Y, et al. . Serum GFAP and NFL levels differentiate subsequent progression and disease activity in patients with progressive multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2023;10:e200052. 10.1212/NXI.0000000000200052 PubMed DOI PMC
ClinicalTrials.gov
NCT02200770