Accuracy, realism and general applicability of European forest models

. 2022 Dec ; 28 (23) : 6921-6943. [epub] 20220919

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36117412

Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.

CREAF Cerdanyola del Vallès Spain

Department of Biodiversity of Ecosystems and Landscape Institute of Landscape Ecology Slovak Academy of Sciences Nitra Slovakia

Department of Environmental Engineering Technical University of Denmark Lyngby Denmark

Department of Environmental Systems Science Forest Ecology Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland

Department of Forest Ecology Mendel University in Brno Brno Czech Republic

Department of Forest Sciences Institute for Atmospheric and Earth System Research and Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland

Department of Innovation in Biological Agro Food and Forest Systems University of Tuscia Viterbo Italy

Division Impacts on Agriculture Forests and Ecosystem Services Fondazione Centro Euro Mediterraneo sui Cambiamenti Climatici Viterbo Italy

Ecology Section Department of Evolutionary Biology Ecology and Environmental Sciences University of Barcelona Barcelona Spain

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Praha Czech Republic

Faculty of Forestry Technical University in Zvolen Zvolen Slovak Republic

Forest Dynamics Unit Swiss Federal Research Institute WSL Birmensdorf Switzerland

Forest Growth and Woody Biomass Production TU Dresden Tharandt Germany

Forest Growth and Yield Science TU München Freising Germany

Forest Modelling Lab National Research Council of Italy Institute for Agriculture and Forestry Systems in the Mediterranean Perugia Italy

Forestry Economics and Forest Planning University of Freiburg Freiburg Germany

Global Change Research Institute CAS Brno Czech Republic

Helmholtz Centre for Environmental Research UFZ Leipzig Germany

Institute of Forestry and Conservation John Daniels Faculty of Architecture Landscape and Design University of Toronto Toronto Ontario Canada

Institute of Meteorology and Climate Research Atmospheric Environmental Research Garmisch Partenkirchen Germany

International Institute for Applied Systems Analysis Laxenburg Austria

LESSEM INRAE Univ Grenoble Alpes St Martin d'Hères France

Natural Resources Institute Finland Helsinki Finland

Northwest German Forest Research Institute Göttingen Germany

Potsdam Institute for Climate Impact Research Leibniz Association Potsdam Germany

Remote Sensing Swiss Federal Research Institute WSL Birmensdorf Switzerland

Theoretical Ecology University of Regensburg Regensburg Germany

UK Centre for Ecology and Hydrology Penicuik Midlothian UK

UMR RECOVER INRAE Aix Marseille University Aix en Provence France

Zobrazit více v PubMed

Aubinet, M., Hurdebise, Q., Chopin, H., Debacq, A., De Ligne, A., Heinesch, B., Manise, T., & Vincke, C. (2018). Inter-annual variability of net ecosystem productivity for a temperate mixed forest: A predominance of carry-over effects? Agricultural and Forest Meteorology, 262, 340-353. https://doi.org/10.1016/j.agrformet.2018.07.024

Augustynczik, A. L. D., & Yousefpour, R. (2021). Assessing the synergistic value of ecosystem services in European beech forests. Ecosystem Services, 49, 101264. https://EconPapers.repec.org/RePEc:eee:ecoser:v:49:y:2021:i:c:s221204162100022x

Aussenac, R., Pérot, T., Fortin, M., de Coligny, F., Monnet, J., & Vallet, P. (2021). The Salem simulator version 2.0: A tool for predicting the productivity of pure and mixed forest stands and simulating management operations [version 2; peer review: 2 approved]. Open Research Europe, 1(61), 1-40. https://doi.org/10.12688/openreseurope.13671.2

Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J., Reyer, C. P. O., Sabate, S., Sanders, T. G. M., & Hartig, F. (2019). Towards a new generation of trait-flexible vegetation models. Trends in Ecology & Evolution, 35, 191-205. https://doi.org/10.1016/j.tree.2019.11.006

Bohn, F. J., Frank, K., & Huth, A. (2014). Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278, 9-17. https://doi.org/10.1016/j.ecolmodel.2014.01.021

Bohn, F. J., May, F., & Huth, A. (2018). Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests. Biogeosciences, 15(6), 1795-1813. https://doi.org/10.5194/bg-15-1795-2018

Botkin, D. B., Janak, J., & Wallis, J. R. (1972). Some ecological consequences of a computer model of forest growth. Journal of Ecology, 60, 849-872.

Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., Río, M., Dodan, M., & Bravo-Oviedo, A. (2018). Modelling approaches for mixed forests dynamics prognosis research gaps and opportunities. Forest Systems, 28(1), 18. https://doi.org/10.5424/fs/2019281-14342

Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W., Heidema, A. H., Nabuurs, G. J., & Gunia, K. (2011). Statistical mapping of tree species over Europe. European Journal of Forest Research, 131(1), 145-157. https://doi.org/10.1007/s10342-011-0513-5

Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Bruna, J., Caillaret, M., Francois, L., Heinke, J., Henrot, A.-J., Hickler, T., Hülsmann, L., Huth, A., Jacquemin, I., Kollas, C., Lasch-Born, P., Lexer, M. J., Merganic, J., Merganicová, K., Mette, T., … Reyer, C. P. O. (2019). Tree mortality submodels drive simulated long-term forest dynamics: Assessing 15 models from the stand to global scale. Ecosphere, 10(2), e02616.

Buras, A., & Menzel, A. (2019). Projecting tree species composition changes of European forests for 2061-2090 under RCP 4.5 and RCP 8.5 scenarios. Frontiers in Plant Science, 9, 1986. https://doi.org/10.3389/fpls.2018.01986

Cameron, D. R., Van Oijen, M., Werner, C., Butterbach-Bahl, K., Grote, R., Haas, E., Heuvelink, G. B. M., Kiese, R., Kros, J., Kuhnert, M., Leip, A., Reinds, G. J., Reuter, H. I., Schelhaas, M. J., De Vries, W., & Yeluripati, J. (2013). Environmental change impacts on the C- and N-cycle of European forests: A model comparison study. Biogeosciences, 10(3), 1751-1773. https://doi.org/10.5194/bg-10-1751-2013

Canell, M. G. R., & Thornley, J. H. M. (2000). Modelling the components of plant respiration: Some guiding principles. Annals of Botany, 85(1), 45-54.

Collalti, A., Ibrom, A., Stockmarr, A., Cescatti, A., Alkama, R., Fernández-Martínez, M., Matteucci, G., Sitch, S., Friedlingstein, P., Ciais, P., Goll, D. S., Nabel, J. E. M. S., Pongratz, J., Arneth, A., Haverd, V., & Prentice, I. C. (2020). Forest production efficiency increases with growth temperature. Nature Communications, 11(1), 5322. https://doi.org/10.1038/s41467-020-19187-w

Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., & Santini, M. (2016). Validation of 3D-CMCC Forest ecosystem model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development, 9(2), 479-504. https://doi.org/10.5194/gmd-9-479-2016

Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest ecosystem model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362-378. https://doi.org/10.1016/j.ecolmodel.2013.09.016

Collalti, A., Thornton, P. E., Cescatti, A., Rita, A., Borghetti, M., Nolè, A., Trotta, C., Ciais, P., & Matteucci, G. (2019). The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 29(2), e01837. https://doi.org/10.1002/eap.1837

Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., & Prentice, I. C. (2020). Plant respiration: Controlled by photosynthesis or biomass? Global Change Biology, 26(3), 1739-1753. https://doi.org/10.1111/gcb.14857

Collalti, A., Trotta, C., Keenan, F. K., Ibrom, A., Bond-Lamberty, B., Grote, R., Vicca, S., Reyer, C. P. O., Migliavacca, M., Veroustraete, F., Anav, A., Campioli, M., Scoccimarro, E., Sigut, L., Gieco, E., Cescatti, A., & Matteucci, G. (2018). Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. Journal of Advances in Modeling Earth Systems, 10, 2427-2452. https://doi.org/10.1002/2018MS001275

Cysneiros, V. C., de Souza, F. C., Gaui, T. D., Pelissari, A. L., Orso, G. A., Machado, S. D., de Carvalho, D. C., & Silveira, T. B. (2021). Integrating climate, soil and stand structure into allometric models: An approach of site-effects on tree allometry in Atlantic Forest. Ecological Indicators, 127, 107794. https://doi.org/10.1016/j.ecolind.2021.107794

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y.-P., Wårlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., … Norby, R. J. (2013). Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19(6), 1759-1779. https://doi.org/10.1111/gcb.12164

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind, D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, S., Smith, B., McCarthy, H. R., … Norby, R. J. (2014). Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytologist, 203(3), 883-899. https://doi.org/10.1111/nph.12847

de Pury, D. G. G., & Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell & Environment, 20(5), 537-557. https://doi.org/10.1111/j.1365-3040.1997.00094.x

de Wergifosse, L., André, F., Goosse, H., Boczon, A., Cecchini, S., Ciceu, A., Collalti, A., Cools, N., D'Andrea, E., De Vos, B., Hamdi, R., Ingerslev, M., Knudsen, M. A., Kowalska, A., Leca, S., Matteucci, G., Nord-Larsen, T., Sanders, T. G. M., Schmitz, A., … Jonard, M. (2022). Simulating tree growth response to climate change in structurally diverse oak and beech forests. Science of the Total Environment, 806, 150422. https://doi.org/10.1016/j.scitotenv.2021.150422

Didion, M., Kupferschmid, A. D., Zingg, A., Fahse, L., & Bugmann, H. (2009). Gaining local accuracy while not losing generality-Extending the range of gap model applications. Canadian Journal of Forest Research, 39(6), 1092-1107. https://doi.org/10.1139/x09-041

Dietze, M. C., Vargas, R., Richardson, A. D., Stoy, P. C., Barr, A. G., Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M., Ciais, P., Flanagan, L. B., Gough, C. M., Grant, R. F., Hollinger, D., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Liu, S., … Weng, E. (2011). Characterizing the performance of ecosystem models across time scales: A spectral analysis of the north American carbon program site-level synthesis. Journal of Geophysical Research: Biogeosciences, 116(G4), G04029. https://doi.org/10.1029/2011JG001661

Dirnböck, T., Kraus, D., Grote, R., Klatt, S., Kobler, J., Schindlbacher, A., Seidl, R., Thom, D., & Kiese, R. (2020). Substantial understory contribution to the C sink of a European temperate mountain forest landscape. Landscape Ecology, 35(2), 483-499. https://doi.org/10.1007/s10980-019-00960-2

Fabrika, M., & Ďurský, J. (2005). Algorithms and software solution of thinning models for SIBYLA growth simulator. Journal of Forest Science, 51(10), 431-445. https://doi.org/10.17221/4577-jfs

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231

Fasiolo, M., Goude, Y., Nedellec, R., & Wood, S. N. (2017). Fast calibrated additive quantile regression. arxiv. https://arxiv.org/abs/1707.03307

Finzi, A. C., Giasson, M.-A., Barker Plotkin, A. A., Aber, J. D., Boose, E. R., Davidson, E. A., Dietze, M. C., Ellison, A. M., Frey, S. D., Goldman, E., Keenan, T. F., Melillo, J. M., Munger, J. W., Nadelhoffer, K. J., Ollinger, S. V., Orwig, D. A., Pederson, N., Richardson, A. D., Savage, K., … Foster, D. R. (2020). Carbon budget of the Harvard Forest long-term ecological research site: Pattern, process, and response to global change. Ecological Monographs, 90(4), e01423. https://doi.org/10.1002/ecm.1423

Foken, T. (2008). Micrometeorology. Springer.

Fontes, L., Bontemps, J.-D., Bugmann, H., Van Oijen, M., Gracia, C., Kramer, K., Lindner, M., Rötzer, T., & Skovsgaard, J. P. (2010). Models for supporting forest management in a changing environment. Forest Systems, 19, 8-29.

Forsius, M., Kujala, H., Minunno, F., Holmberg, M., Leikola, N., Mikkonen, N., Autio, I., Paunu, V.-V., Tanhuanpää, T., Hurskainen, P., Mäyrä, J., Kivinen, S., Keski-Saari, S., Kosenius, A.-K., Kuusela, S., Virkkala, R., Viinikka, A., Vihervaara, P., Akujärvi, A., … Heikkinen, R. K. (2021). Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 775, 145847. https://doi.org/10.1016/j.scitotenv.2021.145847

Franklin, J., Davis, F. W., Ikegami, M., Syphard, A. D., Flint, L. E., Flint, A. L., & Hannah, L. (2013). Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global Change Biology, 19(2), 473-483. https://doi.org/10.1111/gcb.12051

Friedlingstein, P., Joel, G., Field, C. B., & Fung, I. Y. (1999). Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5(7), 755-770. https://doi.org/10.1046/j.1365-2486.1999.00269.x

Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., … Yamagata, Y. (2017). Assessing the impacts of 1.5°C global warming - Simulation protocol of the inter-sectoral impact model intercomparison project (ISIMIP2b). Geoscientific Model Development, 10(12), 4321-4345. https://doi.org/10.5194/gmd-10-4321-2017

Gauch, H. G., Hwang, J. T. G., & Fick, G. W. (2003). Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal, 95, 1442-1446.

Grote, R. (1998). Integrating dynamic morphological properties into forest growth modelling: II allocation and mortality. Forest Ecology and Management, 111(2), 193-210. https://doi.org/10.1016/S0378-1127(98)00328-4

Grote, R., Korhonen, J., & Mammarella, I. (2011). Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species. Forest Systems, 20, 389-406. https://doi.org/10.5424/fs/20112003-11084

Grote, R., Kraus, D., Weis, W., Ettl, R., & Göttlein, A. (2020). Dynamic coupling of allometric ratios to a process-based forest growth model for estimating the impacts of stand density changes. Forestry: An International Journal of Forest Research, 93(5), 601-615. https://doi.org/10.1093/forestry/cpaa002

Gupta, R., & Sharma, L. K. (2019). The process-based forest growth model 3-PG for use in forest management: A review. Ecological Modelling, 397, 55-73. https://doi.org/10.1016/j.ecolmodel.2019.01.007

Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., & Reyer, C. P. O. (2018). Balancing trade-offs between ecosystem services in Germany's forests under climate change. Environmental Research Letters, 13(4), 045012. https://doi.org/10.1088/1748-9326/aab4e5

Haxeltine, A., & Prentice, I. C. (1996a). A general model for the light-use efficiency of primary production. Functional Ecology, 10(5), 551-561.

Haxeltine, A., & Prentice, I. C. (1996b). BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4), 693-709. https://doi.org/10.1029/96GB02344

Hlásny, T., Barcza, Z., Barka, I., Merganičová, K., Sedmák, R., Kern, A., Pajtík, J., Balázs, B., Fabrika, M., & Churkina, G. (2014). Future carbon cycle in mountain spruce forests of Central Europe: Modelling framework and ecological inferences. Forest Ecology and Management, 328, 55-68. https://doi.org/10.1016/j.foreco.2014.04.038

Holmberg, M., Aalto, T., Akujärvi, A., Arslan, A. N., Bergström, I., Böttcher, K., Lahtinen, I., Mäkelä, A., Markkanen, T., Minunno, F., Peltoniemi, M., Rankinen, K., Vihervaara, P., & Forsius, M. (2019). Ecosystem services related to carbon cycling - modeling present and future impacts in boreal forests. Frontiers in Plant Science, 10, 343-351.

Horemans, J. A., Henrot, A., Delire, C., Kollas, C., Lasch-Born, P., Reyer, C., Suckow, F., François, L., & Ceulemans, R. (2017). Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands. Central European Forestry Journal, 63(4), 153-172. https://doi.org/10.1515/forj-2017-0025

Huber, N., Bugmann, H., Cailleret, M., Bircher, N., & Lafond, V. (2021). Stand-scale climate change impacts on forests over large areas: Transient responses and projection uncertainties. Ecological Applications, 31(4), e02313.

Huber, N., Bugmann, H., & Lafond, V. (2020). Capturing ecological processes in dynamic forest models: Why there is no silver bullet to cope with complexity. Ecosphere, 11(5), e03109.

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., … Zhu, Q. (2013). The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project - Part 1: Overview and experimental design. Geoscientific Model Development, 6(6), 2121-2133. https://doi.org/10.5194/gmd-6-2121-2013

Irauschek, F., Barka, I., Bugmann, H., Courbaud, B., Elkin, C., Hlásny, T., Klopcic, M., Mina, M., Rammer, W., & Lexer, M. J. (2021). Evaluating five forest models using multi-decadal inventory data from mountain forests. Ecological Modelling, 445, 109493. https://doi.org/10.1016/j.ecolmodel.2021.109493

Kalliokoski, T., Heinonen, T., Holder, J., Lehtonen, A., Mäkelä, A., Minunno, F., Ollikainen, M., Packalen, T., Peltoniemi, M., Pukkala, T., Salminen, O., Schelhaas, M. J., Seppälä, J., Vauhkonen, J., & Kanninen, M. (2019). Scenario analysis of similarities and differences between forest growth model projections. Finnish Climate Change Panel.

Kalliokoski, T., Mäkelä, A., Fronzek, S., Minunno, F., & Peltoniemi, M. (2018). Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agricultural and Forest Meteorology, 262, 192-205. https://doi.org/10.1016/j.agrformet.2018.06.030

Keenan, T., Maria Serra, J., Lloret, F., Ninyerola, M., & Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17(1), 565-579. https://doi.org/10.1111/j.1365-2486.2010.02254.x

Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O., Carrer, M., Di Filippo, A., Poulter, B., Trotsiuk, V., Wilson, R., & Frank, D. C. (2018). A combined tree ring and vegetation model assessment of European Forest growth sensitivity to interannual climate variability. Global Biogeochemical Cycles, 32(8), 1226-1240. https://doi.org/10.1029/2017GB005856

Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grünwald, T., Hari, P., Jans, W., Kellomäki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., … Vesala, T. (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8(3), 213-230. https://doi.org/10.1046/j.1365-2486.2002.00471.x

Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209-228. https://doi.org/10.1016/S0378-1127(97)00026-1

Lasch-Born, P., Suckow, F., Reyer, C. P. O., Gutsch, M., Kollas, C., Badeck, F. W., Bugmann, H. K. M., Grote, R., Fürstenau, C., Lindner, M., & Schaber, J. (2020). Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites. Geoscientific Model Development, 13(11), 5311-5343. https://doi.org/10.5194/gmd-13-5311-2020

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., & Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187-208. https://doi.org/10.1111/j.1365-2486.2009.02041.x

Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421-431.

Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., & Wolpert, B. (2014). Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest-Measurements and simulations. Agricultural and Forest Meteorology, 197, 219-234. https://doi.org/10.1016/j.agrformet.2014.07.005

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M. J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., & Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. https://doi.org/10.1016/j.jenvman.2014.07.030

Mahnken, M., Collalti, A., Dalmonech, D., Trotta, C., Trotsiuk, V., Augustynczik, A. L. D., Yousefpour, R, Gutsch, M., Cameron, D., Bugmann, H., Huber, N., Thrippleton, T., Bohn, F., Nadal-Sala, D., Sabaté, S., Grote, R., Mäkelä, A., Minunno, F., Peltoniemi, M., … Reyer, C. P. O. (2022) ISIMIP2a simulation data from the regional forests sector (v1.0). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.169780

Mäkelä, A. (1997). A carbon balance model of growth and self-pruning in trees based on structural relationships. Forest Science, 43(1), 7-24. https://doi.org/10.1093/forestscience/43.1.7

Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Bergibier, P., Lindroth, A., Loustau, D., Nikinmaa, E., Vesala, T., & Hari, P. (2008). Developing an empirical model of stand GPP with the LUE approach: Analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 14(1), 92-108. https://doi.org/10.1111/j.1365-2486.2007.01463.x

Marconi, S., Chiti, T., Nolè, A., Valentini, R., & Collalti, A. (2017). The role of respiration in estimation of net carbon cycle: Coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC Forest ecosystem model. Forests, 8(6), 220. https://www.mdpi.com/1999-4907/8/6/220

Marechaux, I., Langerwisch, F., Huth, A., Bugmann, H., Morin, X., Reyer, C. P. O., Seidl, R., Collalti, A., Dantas de Paula, M., Fischer, R., Gutsch, M., Lexer, M. J., Lischke, H., Rammig, A., Rodig, E., Sakschewski, B., Taubert, F., Thonicke, K., Vacchiano, G., & Bohn, F. J. (2021). Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 11(9), 3746-3770. https://doi.org/10.1002/ece3.7391

McCree, K., & Setlick, I. (1970). Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP technical meeting, Trebon, 14-21 September 1969.

Medlyn, B. E., Duursma, R. A., & Zeppel, M. J. B. (2011). Forest productivity under climate change: A checklist for evaluating model studies. Wiley Interdisciplinary Reviews: Climate Change, 2(3), 332-355. https://doi.org/10.1002/wcc.108

Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6), 528-534. https://doi.org/10.1038/nclimate2621

Merganic, J., Merganicova, K., Vybostok, J., Valent, P., Bahyl, J., & Yousefpour, R. (2020). Searching for pareto fronts for forest stand wind stability by incorporating timber and biodiversity values. Forests, 11(5), 583. https://www.mdpi.com/1999-4907/11/5/583

Mina, M., Bugmann, H., Klopcic, M., & Cailleret, M. (2015). Accurate modeling of harvesting is key for projecting future forest dynamics: A case study in the Slovenian mountains. Regional Environmental Change, 17(1), 49-64. https://doi.org/10.1007/s10113-015-0902-2

Minunno, F., Peltoniemi, M., Härkönen, S., Kalliokoski, T., Makinen, H., & Mäkelä, A. (2019). Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 440, 208-257. https://doi.org/10.1016/j.foreco.2019.02.041

Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., & Heimann, M. (2010). Characterization of ecosystem responses to climatic controls using artificial neural networks. Global Change Biology, 16(10), 2737-2749. https://doi.org/10.1111/j.1365-2486.2010.02171.x

Monteith, J. L., Moss, C. J., Cooke, G. W., Pirie, N. W., & Bell, G. D. H. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140

Moore, A. D. (1989). On the maximum growth equation used in forest gap simulation models. Ecological Modelling, 45, 63-67.

Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, N., Sabate, S., Sanchez, A., Pla, E., Gracia, C. A., Sitch, S., Arneth, A., & Ogee, J. (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11(12), 2211-2233. https://doi.org/10.1111/j.1365-2486.2005.01036.x

Nadal-Sala, D., Grote, R., Birami, B., Lintunen, A., Mammarella, I., Preisler, Y., Rotenberg, E., Salmon, Y., Tatarinov, F., Yakir, D., & Ruehr, N. K. (2021). Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. Ecological Applications, 31(4), e02312. https://doi.org/10.1002/eap.2312

Nadal-Sala, D., Hartig, F., Gracia, C. A., & Sabaté, S. (2019). Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 449, 117448. https://doi.org/10.1016/j.foreco.2019.117448

Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023-1027. https://doi.org/10.1038/nclimate3114

Oberpriller, J., Cameron, D. R., Dietze, M. C., & Hartig, F. (2021). Towards robust statistical inference for complex computer models. Ecology Letters, 24(6), 1251-1261. https://doi.org/10.1111/ele.13728

Oikawa, P. Y., Sturtevant, C., Knox, S. H., Verfaillie, J., Huang, Y. W., & Baldocchi, D. D. (2017). Revisiting the partitioning of net ecosystem exchange of CO2 into photosynthesis and respiration with simultaneous flux measurements of 13CO2 and CO2, soil respiration and a biophysical model, CANVEG. Agricultural and Forest Meteorology, 234-235, 149-163. https://doi.org/10.1016/j.agrformet.2016.12.016

Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., … Calama, R. (2021). The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687. https://doi.org/10.1016/j.foreco.2020.118687

Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S., Luo, Y., … Zhu, Q. (2020). Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology, 26(6), 3336-3355. https://doi.org/10.1111/gcb.15024

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., … Papale, D. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3

Peltoniemi, M., Pulkkinen, M., Aurela, M., Pumpanen, J., Kolari, P., & Mäkelä, A. (2015). A semi-empirical model of boreal forest gross primary production, evapotranspiration, and soil water - Calibration and sensitivity analysis. Boreal Environment Research, 20, 151-171. http://hdl.handle.net/10138/228031

Pretzsch, H., Forrester, D. I., & Rötzer, T. (2015). Representation of species mixing in forest growth models. A review and perspective. Ecological Modelling, 313, 276-292. https://doi.org/10.1016/j.ecolmodel.2015.06.044

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006). Empirical analyses of plant-climate relationships for the western United States. International Journal of Plant Sciences, 167(6), 1123-1150.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

Reyer, C., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., … Frieler, K. (2020a). The PROFOUND database for evaluating vegetation models and simulating climate impacts on European forests version V. 0.3. GFZ Data Services. https://doi.org/10.5880/PIK.2020.006

Reyer, C. P. O., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., & Pilz, T. (2013). Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science, 71(2), 211-225. https://doi.org/10.1007/s13595-013-0306-8

Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., … Frieler, K. (2020b). The PROFOUND database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 12(2), 1295-1320. https://doi.org/10.5194/essd-12-1295-2020

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough, C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Migliavacca, M., … Xue, Y. (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the north American carbon program site synthesis. Global Change Biology, 18(2), 566-584. https://doi.org/10.1111/j.1365-2486.2011.02562.x

Rödig, E., Huth, A., Bohn, F., Rebmann, C., & Cuntz, M. (2017). Estimating the carbon fluxes of forests with an individual-based forest model. Forest Ecosystems, 4(1), 4. https://doi.org/10.1186/s40663-017-0091-1

Rollinson, C. R., Dawson, A., Raiho, A. M., Williams, J. W., Dietze, M. C., Hickler, T., Jackson, S. T., McLachlan, J., Moore, J. P., Poulter, B., Quaife, T., Steinkamp, J., & Trachsel, M. (2021). Forest responses to last-millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecology Letters, 24(3), 498-508. https://doi.org/10.1111/ele.13667

Rollinson, C. R., Liu, Y., Raiho, A., Moore, D. J. P., McLachlan, J., Bishop, D. A., Dye, A., Matthes, J. H., Hessl, A., Hickler, T., Pederson, N., Poulter, B., Quaife, T., Schaefer, K., Steinkamp, J., & Dietze, M. C. (2017). Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 23(7), 2755-2767. https://doi.org/10.1111/gcb.13626

Sabaté, S., Gracia, C. A., & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, 162, 23-37.

Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A., Chen, J. M., Davis, K. J., Dimitrov, D., Hilton, T. W., Hollinger, D. Y., Humphreys, E., Poulter, B., Raczka, B. M., Richardson, A. D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson, R., … Zhou, X. (2012). A model-data comparison of gross primary productivity: Results from the north American carbon program site synthesis. Journal of Geophysical Research: Biogeosciences, 117(G3), G03010. https://doi.org/10.1029/2012JG001960

Schweier, J., Molina-Herrera, S., Ghirardo, A., Grote, R., Díaz-Pinés, E., Kreuzwieser, J., Haas, E., Butterbach-Bahl, K., Rennenberg, H., Schnitzler, J.-P., & Becker, G. (2017). Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy, 9(7), 1207-1221. https://doi.org/10.1111/gcbb.12423

Stoy, P. C., Dietze, M. C., Richardson, A. D., Vargas, R., Barr, A. G., Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M., Cook, R. B., Gough, C. M., Grant, R. F., Hollinger, D. Y., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Law, B. E., Liu, S., … Weng, E. (2013). Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: An example using data from the north American carbon program site-level interim synthesis. Biogeosciences, 10(11), 6893-6909. https://doi.org/10.5194/bg-10-6893-2013

Thornley, J. H. M. (1970). Respiration, growth and maintenance in plants. Nature, 227(5255), 304-305. https://doi.org/10.1038/227304b0

Toïgo, M., Perot, T., Courbaud, B., Castagneyrol, B., Gégout, J.-C., Longuetaud, F., Jactel, H., & Vallet, P. (2018). Difference in shade tolerance drives the mixture effect on oak productivity. Journal of Ecology, 106(3), 1073-1082. https://doi.org/10.1111/1365-2745.12811

Toïgo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., & Canham, C. (2015). Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103(2), 502-512. https://doi.org/10.1111/1365-2745.12353

Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D. I., Baltensweiler, A., Buchmann, N., Bugmann, H., Gessler, A., Gharun, M., Minunno, F., Rigling, A., Rohner, B., Stillhard, J., Thurig, E., Waldner, P., Ferretti, M., Eugster, W., & Schaub, M. (2020). Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion. Global Change Biology, 26, 2463-2476. https://doi.org/10.1111/gcb.15011

Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J., & Stephenson, N. L. (2021). Why is tree drought mortality so hard to predict? Trends in Ecology & Evolution, 36(6), 520-532. https://doi.org/10.1016/j.tree.2021.02.001

Vallet, P., & Pérot, T. (2018). Coupling transversal and longitudinal models to better predict Quercus petraea and Pinus sylvestris stand growth under climate change. Agricultural and Forest Meteorology, 263, 258-266.

van Oijen, M., Balkovi, J., Beer, C., Cameron, D. R., Ciais, P., Cramer, W., Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S., Soussana, J. F., Thonicke, K., Van der Velde, M., & Xu, L. (2014). Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models. Biogeosciences, 11(22), 6357-6375. https://doi.org/10.5194/bg-11-6357-2014

Wagener, T., Reinecke, R., & Pianosi, F. (2022). On the evaluation of climate change impact models. WIREs Climate Change, 13(3), e772. https://doi.org/10.1002/wcc.772

Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., … Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5), 2413-2445. https://doi.org/10.1111/nph.16866

Walker, A. P., Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Asao, S., Hickler, T., Parton, W., Ricciuto, D. M., Wang, Y.-P., Wårlind, D., & Norby, R. J. (2015). Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Global Biogeochemical Cycles, 29(4), 476-495. https://doi.org/10.1002/2014GB004995

Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., & Shi, X. (2014). The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project - Part 2: Environmental driver data. Geoscientific Model Development, 7(6), 2875-2893. https://doi.org/10.5194/gmd-7-2875-2014

Weisberg, M. (2007). Forty years of ‘the strategy’: Levins on model building and idealization. Biology and Philosophy, 21(5), 623-645. https://doi.org/10.1007/s10539-006-9051-9

Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279

Xenakis, G., Ray, D., & Mencuccini, M. (2008). Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecological Modelling, 219(1), 1-16. https://doi.org/10.1016/j.ecolmodel.2008.07.020

Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., … Norby, R. J. (2014). Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytologist, 202(3), 803-822. https://doi.org/10.1111/nph.12697

Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., & Novick, K. A. (2019). Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environmental Research Letters, 14(7), 074023. https://doi.org/10.1088/1748-9326/ab2603

Zhang, Z., Zhang, R., Cescatti, A., Wohlfahrt, G., Buchmann, N., Zhu, J., Chen, G., Moyano, F., Pumpanen, J., Hirano, T., Takagi, K., & Merbold, L. (2017). Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 7(1), 3108. https://doi.org/10.1038/s41598-017-03386-5

Zhou, H., Yue, X., Lei, Y., Zhang, T., Tian, C., Ma, Y., & Cao, Y. (2021). Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 244, 117905. https://doi.org/10.1016/j.atmosenv.2020.117905

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...