Accuracy, realism and general applicability of European forest models
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36117412
DOI
10.1111/gcb.16384
Knihovny.cz E-zdroje
- Klíčová slova
- eddy-covariance, gap model, model ensemble, model evaluation, process-based modeling, terrestrial carbon dynamics,
- MeSH
- klimatické změny * MeSH
- koloběh uhlíku * MeSH
- teplota MeSH
- uhlík MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík MeSH
- voda MeSH
Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
CREAF Cerdanyola del Vallès Spain
Department of Environmental Engineering Technical University of Denmark Lyngby Denmark
Department of Forest Ecology Mendel University in Brno Brno Czech Republic
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Praha Czech Republic
Faculty of Forestry Technical University in Zvolen Zvolen Slovak Republic
Forest Dynamics Unit Swiss Federal Research Institute WSL Birmensdorf Switzerland
Forest Growth and Woody Biomass Production TU Dresden Tharandt Germany
Forest Growth and Yield Science TU München Freising Germany
Forestry Economics and Forest Planning University of Freiburg Freiburg Germany
Global Change Research Institute CAS Brno Czech Republic
Helmholtz Centre for Environmental Research UFZ Leipzig Germany
International Institute for Applied Systems Analysis Laxenburg Austria
LESSEM INRAE Univ Grenoble Alpes St Martin d'Hères France
Natural Resources Institute Finland Helsinki Finland
Northwest German Forest Research Institute Göttingen Germany
Potsdam Institute for Climate Impact Research Leibniz Association Potsdam Germany
Remote Sensing Swiss Federal Research Institute WSL Birmensdorf Switzerland
Theoretical Ecology University of Regensburg Regensburg Germany
UK Centre for Ecology and Hydrology Penicuik Midlothian UK
UMR RECOVER INRAE Aix Marseille University Aix en Provence France
Zobrazit více v PubMed
Aubinet, M., Hurdebise, Q., Chopin, H., Debacq, A., De Ligne, A., Heinesch, B., Manise, T., & Vincke, C. (2018). Inter-annual variability of net ecosystem productivity for a temperate mixed forest: A predominance of carry-over effects? Agricultural and Forest Meteorology, 262, 340-353. https://doi.org/10.1016/j.agrformet.2018.07.024
Augustynczik, A. L. D., & Yousefpour, R. (2021). Assessing the synergistic value of ecosystem services in European beech forests. Ecosystem Services, 49, 101264. https://EconPapers.repec.org/RePEc:eee:ecoser:v:49:y:2021:i:c:s221204162100022x
Aussenac, R., Pérot, T., Fortin, M., de Coligny, F., Monnet, J., & Vallet, P. (2021). The Salem simulator version 2.0: A tool for predicting the productivity of pure and mixed forest stands and simulating management operations [version 2; peer review: 2 approved]. Open Research Europe, 1(61), 1-40. https://doi.org/10.12688/openreseurope.13671.2
Berzaghi, F., Wright, I. J., Kramer, K., Oddou-Muratorio, S., Bohn, F. J., Reyer, C. P. O., Sabate, S., Sanders, T. G. M., & Hartig, F. (2019). Towards a new generation of trait-flexible vegetation models. Trends in Ecology & Evolution, 35, 191-205. https://doi.org/10.1016/j.tree.2019.11.006
Bohn, F. J., Frank, K., & Huth, A. (2014). Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecological Modelling, 278, 9-17. https://doi.org/10.1016/j.ecolmodel.2014.01.021
Bohn, F. J., May, F., & Huth, A. (2018). Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests. Biogeosciences, 15(6), 1795-1813. https://doi.org/10.5194/bg-15-1795-2018
Botkin, D. B., Janak, J., & Wallis, J. R. (1972). Some ecological consequences of a computer model of forest growth. Journal of Ecology, 60, 849-872.
Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., Río, M., Dodan, M., & Bravo-Oviedo, A. (2018). Modelling approaches for mixed forests dynamics prognosis research gaps and opportunities. Forest Systems, 28(1), 18. https://doi.org/10.5424/fs/2019281-14342
Brus, D. J., Hengeveld, G. M., Walvoort, D. J. J., Goedhart, P. W., Heidema, A. H., Nabuurs, G. J., & Gunia, K. (2011). Statistical mapping of tree species over Europe. European Journal of Forest Research, 131(1), 145-157. https://doi.org/10.1007/s10342-011-0513-5
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Bruna, J., Caillaret, M., Francois, L., Heinke, J., Henrot, A.-J., Hickler, T., Hülsmann, L., Huth, A., Jacquemin, I., Kollas, C., Lasch-Born, P., Lexer, M. J., Merganic, J., Merganicová, K., Mette, T., … Reyer, C. P. O. (2019). Tree mortality submodels drive simulated long-term forest dynamics: Assessing 15 models from the stand to global scale. Ecosphere, 10(2), e02616.
Buras, A., & Menzel, A. (2019). Projecting tree species composition changes of European forests for 2061-2090 under RCP 4.5 and RCP 8.5 scenarios. Frontiers in Plant Science, 9, 1986. https://doi.org/10.3389/fpls.2018.01986
Cameron, D. R., Van Oijen, M., Werner, C., Butterbach-Bahl, K., Grote, R., Haas, E., Heuvelink, G. B. M., Kiese, R., Kros, J., Kuhnert, M., Leip, A., Reinds, G. J., Reuter, H. I., Schelhaas, M. J., De Vries, W., & Yeluripati, J. (2013). Environmental change impacts on the C- and N-cycle of European forests: A model comparison study. Biogeosciences, 10(3), 1751-1773. https://doi.org/10.5194/bg-10-1751-2013
Canell, M. G. R., & Thornley, J. H. M. (2000). Modelling the components of plant respiration: Some guiding principles. Annals of Botany, 85(1), 45-54.
Collalti, A., Ibrom, A., Stockmarr, A., Cescatti, A., Alkama, R., Fernández-Martínez, M., Matteucci, G., Sitch, S., Friedlingstein, P., Ciais, P., Goll, D. S., Nabel, J. E. M. S., Pongratz, J., Arneth, A., Haverd, V., & Prentice, I. C. (2020). Forest production efficiency increases with growth temperature. Nature Communications, 11(1), 5322. https://doi.org/10.1038/s41467-020-19187-w
Collalti, A., Marconi, S., Ibrom, A., Trotta, C., Anav, A., Andrea, E., Matteucci, G., Montagnani, L., Gielen, B., Mammarella, I., Grünwald, T., Knohl, A., Berninger, F., Zhao, Y., Valentini, R., & Santini, M. (2016). Validation of 3D-CMCC Forest ecosystem model (v.5.1) against eddy covariance data for 10 European forest sites. Geoscientific Model Development, 9(2), 479-504. https://doi.org/10.5194/gmd-9-479-2016
Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest ecosystem model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362-378. https://doi.org/10.1016/j.ecolmodel.2013.09.016
Collalti, A., Thornton, P. E., Cescatti, A., Rita, A., Borghetti, M., Nolè, A., Trotta, C., Ciais, P., & Matteucci, G. (2019). The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecological Applications, 29(2), e01837. https://doi.org/10.1002/eap.1837
Collalti, A., Tjoelker, M. G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., Ryan, M. G., Battipaglia, G., Matteucci, G., & Prentice, I. C. (2020). Plant respiration: Controlled by photosynthesis or biomass? Global Change Biology, 26(3), 1739-1753. https://doi.org/10.1111/gcb.14857
Collalti, A., Trotta, C., Keenan, F. K., Ibrom, A., Bond-Lamberty, B., Grote, R., Vicca, S., Reyer, C. P. O., Migliavacca, M., Veroustraete, F., Anav, A., Campioli, M., Scoccimarro, E., Sigut, L., Gieco, E., Cescatti, A., & Matteucci, G. (2018). Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. Journal of Advances in Modeling Earth Systems, 10, 2427-2452. https://doi.org/10.1002/2018MS001275
Cysneiros, V. C., de Souza, F. C., Gaui, T. D., Pelissari, A. L., Orso, G. A., Machado, S. D., de Carvalho, D. C., & Silveira, T. B. (2021). Integrating climate, soil and stand structure into allometric models: An approach of site-effects on tree allometry in Atlantic Forest. Ecological Indicators, 127, 107794. https://doi.org/10.1016/j.ecolind.2021.107794
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y.-P., Wårlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., … Norby, R. J. (2013). Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Global Change Biology, 19(6), 1759-1779. https://doi.org/10.1111/gcb.12164
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Wang, Y. P., Luo, Y., Jain, A. K., El-Masri, B., Hickler, T., Wårlind, D., Weng, E., Parton, W. J., Thornton, P. E., Wang, S., Prentice, I. C., Asao, S., Smith, B., McCarthy, H. R., … Norby, R. J. (2014). Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytologist, 203(3), 883-899. https://doi.org/10.1111/nph.12847
de Pury, D. G. G., & Farquhar, G. D. (1997). Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell & Environment, 20(5), 537-557. https://doi.org/10.1111/j.1365-3040.1997.00094.x
de Wergifosse, L., André, F., Goosse, H., Boczon, A., Cecchini, S., Ciceu, A., Collalti, A., Cools, N., D'Andrea, E., De Vos, B., Hamdi, R., Ingerslev, M., Knudsen, M. A., Kowalska, A., Leca, S., Matteucci, G., Nord-Larsen, T., Sanders, T. G. M., Schmitz, A., … Jonard, M. (2022). Simulating tree growth response to climate change in structurally diverse oak and beech forests. Science of the Total Environment, 806, 150422. https://doi.org/10.1016/j.scitotenv.2021.150422
Didion, M., Kupferschmid, A. D., Zingg, A., Fahse, L., & Bugmann, H. (2009). Gaining local accuracy while not losing generality-Extending the range of gap model applications. Canadian Journal of Forest Research, 39(6), 1092-1107. https://doi.org/10.1139/x09-041
Dietze, M. C., Vargas, R., Richardson, A. D., Stoy, P. C., Barr, A. G., Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M., Ciais, P., Flanagan, L. B., Gough, C. M., Grant, R. F., Hollinger, D., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Liu, S., … Weng, E. (2011). Characterizing the performance of ecosystem models across time scales: A spectral analysis of the north American carbon program site-level synthesis. Journal of Geophysical Research: Biogeosciences, 116(G4), G04029. https://doi.org/10.1029/2011JG001661
Dirnböck, T., Kraus, D., Grote, R., Klatt, S., Kobler, J., Schindlbacher, A., Seidl, R., Thom, D., & Kiese, R. (2020). Substantial understory contribution to the C sink of a European temperate mountain forest landscape. Landscape Ecology, 35(2), 483-499. https://doi.org/10.1007/s10980-019-00960-2
Fabrika, M., & Ďurský, J. (2005). Algorithms and software solution of thinning models for SIBYLA growth simulator. Journal of Forest Science, 51(10), 431-445. https://doi.org/10.17221/4577-jfs
Farquhar, G. D., von Caemmerer, S., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1), 78-90. https://doi.org/10.1007/BF00386231
Fasiolo, M., Goude, Y., Nedellec, R., & Wood, S. N. (2017). Fast calibrated additive quantile regression. arxiv. https://arxiv.org/abs/1707.03307
Finzi, A. C., Giasson, M.-A., Barker Plotkin, A. A., Aber, J. D., Boose, E. R., Davidson, E. A., Dietze, M. C., Ellison, A. M., Frey, S. D., Goldman, E., Keenan, T. F., Melillo, J. M., Munger, J. W., Nadelhoffer, K. J., Ollinger, S. V., Orwig, D. A., Pederson, N., Richardson, A. D., Savage, K., … Foster, D. R. (2020). Carbon budget of the Harvard Forest long-term ecological research site: Pattern, process, and response to global change. Ecological Monographs, 90(4), e01423. https://doi.org/10.1002/ecm.1423
Foken, T. (2008). Micrometeorology. Springer.
Fontes, L., Bontemps, J.-D., Bugmann, H., Van Oijen, M., Gracia, C., Kramer, K., Lindner, M., Rötzer, T., & Skovsgaard, J. P. (2010). Models for supporting forest management in a changing environment. Forest Systems, 19, 8-29.
Forsius, M., Kujala, H., Minunno, F., Holmberg, M., Leikola, N., Mikkonen, N., Autio, I., Paunu, V.-V., Tanhuanpää, T., Hurskainen, P., Mäyrä, J., Kivinen, S., Keski-Saari, S., Kosenius, A.-K., Kuusela, S., Virkkala, R., Viinikka, A., Vihervaara, P., Akujärvi, A., … Heikkinen, R. K. (2021). Developing a spatially explicit modelling and evaluation framework for integrated carbon sequestration and biodiversity conservation: Application in southern Finland. Science of the Total Environment, 775, 145847. https://doi.org/10.1016/j.scitotenv.2021.145847
Franklin, J., Davis, F. W., Ikegami, M., Syphard, A. D., Flint, L. E., Flint, A. L., & Hannah, L. (2013). Modeling plant species distributions under future climates: How fine scale do climate projections need to be? Global Change Biology, 19(2), 473-483. https://doi.org/10.1111/gcb.12051
Friedlingstein, P., Joel, G., Field, C. B., & Fung, I. Y. (1999). Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5(7), 755-770. https://doi.org/10.1046/j.1365-2486.1999.00269.x
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., … Yamagata, Y. (2017). Assessing the impacts of 1.5°C global warming - Simulation protocol of the inter-sectoral impact model intercomparison project (ISIMIP2b). Geoscientific Model Development, 10(12), 4321-4345. https://doi.org/10.5194/gmd-10-4321-2017
Gauch, H. G., Hwang, J. T. G., & Fick, G. W. (2003). Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal, 95, 1442-1446.
Grote, R. (1998). Integrating dynamic morphological properties into forest growth modelling: II allocation and mortality. Forest Ecology and Management, 111(2), 193-210. https://doi.org/10.1016/S0378-1127(98)00328-4
Grote, R., Korhonen, J., & Mammarella, I. (2011). Challenges for evaluating process-based models of gas exchange at forest sites with fetches of various species. Forest Systems, 20, 389-406. https://doi.org/10.5424/fs/20112003-11084
Grote, R., Kraus, D., Weis, W., Ettl, R., & Göttlein, A. (2020). Dynamic coupling of allometric ratios to a process-based forest growth model for estimating the impacts of stand density changes. Forestry: An International Journal of Forest Research, 93(5), 601-615. https://doi.org/10.1093/forestry/cpaa002
Gupta, R., & Sharma, L. K. (2019). The process-based forest growth model 3-PG for use in forest management: A review. Ecological Modelling, 397, 55-73. https://doi.org/10.1016/j.ecolmodel.2019.01.007
Gutsch, M., Lasch-Born, P., Kollas, C., Suckow, F., & Reyer, C. P. O. (2018). Balancing trade-offs between ecosystem services in Germany's forests under climate change. Environmental Research Letters, 13(4), 045012. https://doi.org/10.1088/1748-9326/aab4e5
Haxeltine, A., & Prentice, I. C. (1996a). A general model for the light-use efficiency of primary production. Functional Ecology, 10(5), 551-561.
Haxeltine, A., & Prentice, I. C. (1996b). BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10(4), 693-709. https://doi.org/10.1029/96GB02344
Hlásny, T., Barcza, Z., Barka, I., Merganičová, K., Sedmák, R., Kern, A., Pajtík, J., Balázs, B., Fabrika, M., & Churkina, G. (2014). Future carbon cycle in mountain spruce forests of Central Europe: Modelling framework and ecological inferences. Forest Ecology and Management, 328, 55-68. https://doi.org/10.1016/j.foreco.2014.04.038
Holmberg, M., Aalto, T., Akujärvi, A., Arslan, A. N., Bergström, I., Böttcher, K., Lahtinen, I., Mäkelä, A., Markkanen, T., Minunno, F., Peltoniemi, M., Rankinen, K., Vihervaara, P., & Forsius, M. (2019). Ecosystem services related to carbon cycling - modeling present and future impacts in boreal forests. Frontiers in Plant Science, 10, 343-351.
Horemans, J. A., Henrot, A., Delire, C., Kollas, C., Lasch-Born, P., Reyer, C., Suckow, F., François, L., & Ceulemans, R. (2017). Combining multiple statistical methods to evaluate the performance of process-based vegetation models across three forest stands. Central European Forestry Journal, 63(4), 153-172. https://doi.org/10.1515/forj-2017-0025
Huber, N., Bugmann, H., Cailleret, M., Bircher, N., & Lafond, V. (2021). Stand-scale climate change impacts on forests over large areas: Transient responses and projection uncertainties. Ecological Applications, 31(4), e02313.
Huber, N., Bugmann, H., & Lafond, V. (2020). Capturing ecological processes in dynamic forest models: Why there is no silver bullet to cope with complexity. Ecosphere, 11(5), e03109.
Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., … Zhu, Q. (2013). The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project - Part 1: Overview and experimental design. Geoscientific Model Development, 6(6), 2121-2133. https://doi.org/10.5194/gmd-6-2121-2013
Irauschek, F., Barka, I., Bugmann, H., Courbaud, B., Elkin, C., Hlásny, T., Klopcic, M., Mina, M., Rammer, W., & Lexer, M. J. (2021). Evaluating five forest models using multi-decadal inventory data from mountain forests. Ecological Modelling, 445, 109493. https://doi.org/10.1016/j.ecolmodel.2021.109493
Kalliokoski, T., Heinonen, T., Holder, J., Lehtonen, A., Mäkelä, A., Minunno, F., Ollikainen, M., Packalen, T., Peltoniemi, M., Pukkala, T., Salminen, O., Schelhaas, M. J., Seppälä, J., Vauhkonen, J., & Kanninen, M. (2019). Scenario analysis of similarities and differences between forest growth model projections. Finnish Climate Change Panel.
Kalliokoski, T., Mäkelä, A., Fronzek, S., Minunno, F., & Peltoniemi, M. (2018). Decomposing sources of uncertainty in climate change projections of boreal forest primary production. Agricultural and Forest Meteorology, 262, 192-205. https://doi.org/10.1016/j.agrformet.2018.06.030
Keenan, T., Maria Serra, J., Lloret, F., Ninyerola, M., & Sabate, S. (2011). Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biology, 17(1), 565-579. https://doi.org/10.1111/j.1365-2486.2010.02254.x
Klesse, S., Babst, F., Lienert, S., Spahni, R., Joos, F., Bouriaud, O., Carrer, M., Di Filippo, A., Poulter, B., Trotsiuk, V., Wilson, R., & Frank, D. C. (2018). A combined tree ring and vegetation model assessment of European Forest growth sensitivity to interannual climate variability. Global Biogeochemical Cycles, 32(8), 1226-1240. https://doi.org/10.1029/2017GB005856
Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grünwald, T., Hari, P., Jans, W., Kellomäki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., … Vesala, T. (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8(3), 213-230. https://doi.org/10.1046/j.1365-2486.2002.00471.x
Landsberg, J. J., & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95(3), 209-228. https://doi.org/10.1016/S0378-1127(97)00026-1
Lasch-Born, P., Suckow, F., Reyer, C. P. O., Gutsch, M., Kollas, C., Badeck, F. W., Bugmann, H. K. M., Grote, R., Fürstenau, C., Lindner, M., & Schaber, J. (2020). Description and evaluation of the process-based forest model 4C v2.2 at four European forest sites. Geoscientific Model Development, 13(11), 5311-5343. https://doi.org/10.5194/gmd-13-5311-2020
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., & Wohlfahrt, G. (2010). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187-208. https://doi.org/10.1111/j.1365-2486.2009.02041.x
Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54(4), 421-431.
Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., & Wolpert, B. (2014). Net ecosystem exchange over a non-cleared wind-throw-disturbed upland spruce forest-Measurements and simulations. Agricultural and Forest Meteorology, 197, 219-234. https://doi.org/10.1016/j.agrformet.2014.07.005
Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M. J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., & Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. https://doi.org/10.1016/j.jenvman.2014.07.030
Mahnken, M., Collalti, A., Dalmonech, D., Trotta, C., Trotsiuk, V., Augustynczik, A. L. D., Yousefpour, R, Gutsch, M., Cameron, D., Bugmann, H., Huber, N., Thrippleton, T., Bohn, F., Nadal-Sala, D., Sabaté, S., Grote, R., Mäkelä, A., Minunno, F., Peltoniemi, M., … Reyer, C. P. O. (2022) ISIMIP2a simulation data from the regional forests sector (v1.0). ISIMIP Repository. https://doi.org/10.48364/ISIMIP.169780
Mäkelä, A. (1997). A carbon balance model of growth and self-pruning in trees based on structural relationships. Forest Science, 43(1), 7-24. https://doi.org/10.1093/forestscience/43.1.7
Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Bergibier, P., Lindroth, A., Loustau, D., Nikinmaa, E., Vesala, T., & Hari, P. (2008). Developing an empirical model of stand GPP with the LUE approach: Analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 14(1), 92-108. https://doi.org/10.1111/j.1365-2486.2007.01463.x
Marconi, S., Chiti, T., Nolè, A., Valentini, R., & Collalti, A. (2017). The role of respiration in estimation of net carbon cycle: Coupling soil carbon dynamics and canopy turnover in a novel version of 3D-CMCC Forest ecosystem model. Forests, 8(6), 220. https://www.mdpi.com/1999-4907/8/6/220
Marechaux, I., Langerwisch, F., Huth, A., Bugmann, H., Morin, X., Reyer, C. P. O., Seidl, R., Collalti, A., Dantas de Paula, M., Fischer, R., Gutsch, M., Lexer, M. J., Lischke, H., Rammig, A., Rodig, E., Sakschewski, B., Taubert, F., Thonicke, K., Vacchiano, G., & Bohn, F. J. (2021). Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 11(9), 3746-3770. https://doi.org/10.1002/ece3.7391
McCree, K., & Setlick, I. (1970). Prediction and measurement of photosynthetic productivity. Proceedings of the IBP/PP technical meeting, Trebon, 14-21 September 1969.
Medlyn, B. E., Duursma, R. A., & Zeppel, M. J. B. (2011). Forest productivity under climate change: A checklist for evaluating model studies. Wiley Interdisciplinary Reviews: Climate Change, 2(3), 332-355. https://doi.org/10.1002/wcc.108
Medlyn, B. E., Zaehle, S., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hanson, P. J., Hickler, T., Jain, A. K., Luo, Y., Parton, W., Prentice, I. C., Thornton, P. E., Wang, S., Wang, Y.-P., Weng, E., Iversen, C. M., McCarthy, H. R., Warren, J. M., Oren, R., & Norby, R. J. (2015). Using ecosystem experiments to improve vegetation models. Nature Climate Change, 5(6), 528-534. https://doi.org/10.1038/nclimate2621
Merganic, J., Merganicova, K., Vybostok, J., Valent, P., Bahyl, J., & Yousefpour, R. (2020). Searching for pareto fronts for forest stand wind stability by incorporating timber and biodiversity values. Forests, 11(5), 583. https://www.mdpi.com/1999-4907/11/5/583
Mina, M., Bugmann, H., Klopcic, M., & Cailleret, M. (2015). Accurate modeling of harvesting is key for projecting future forest dynamics: A case study in the Slovenian mountains. Regional Environmental Change, 17(1), 49-64. https://doi.org/10.1007/s10113-015-0902-2
Minunno, F., Peltoniemi, M., Härkönen, S., Kalliokoski, T., Makinen, H., & Mäkelä, A. (2019). Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 440, 208-257. https://doi.org/10.1016/j.foreco.2019.02.041
Moffat, A. M., Beckstein, C., Churkina, G., Mund, M., & Heimann, M. (2010). Characterization of ecosystem responses to climatic controls using artificial neural networks. Global Change Biology, 16(10), 2737-2749. https://doi.org/10.1111/j.1365-2486.2010.02171.x
Monteith, J. L., Moss, C. J., Cooke, G. W., Pirie, N. W., & Bell, G. D. H. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 281(980), 277-294. https://doi.org/10.1098/rstb.1977.0140
Moore, A. D. (1989). On the maximum growth equation used in forest gap simulation models. Ecological Modelling, 45, 63-67.
Morales, P., Sykes, M. T., Prentice, I. C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, N., Sabate, S., Sanchez, A., Pla, E., Gracia, C. A., Sitch, S., Arneth, A., & Ogee, J. (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11(12), 2211-2233. https://doi.org/10.1111/j.1365-2486.2005.01036.x
Nadal-Sala, D., Grote, R., Birami, B., Lintunen, A., Mammarella, I., Preisler, Y., Rotenberg, E., Salmon, Y., Tatarinov, F., Yakir, D., & Ruehr, N. K. (2021). Assessing model performance via the most limiting environmental driver in two differently stressed pine stands. Ecological Applications, 31(4), e02312. https://doi.org/10.1002/eap.2312
Nadal-Sala, D., Hartig, F., Gracia, C. A., & Sabaté, S. (2019). Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 449, 117448. https://doi.org/10.1016/j.foreco.2019.117448
Novick, K. A., Ficklin, D. L., Stoy, P. C., Williams, C. A., Bohrer, G., Oishi, A. C., Papuga, S. A., Blanken, P. D., Noormets, A., Sulman, B. N., Scott, R. L., Wang, L., & Phillips, R. P. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6(11), 1023-1027. https://doi.org/10.1038/nclimate3114
Oberpriller, J., Cameron, D. R., Dietze, M. C., & Hartig, F. (2021). Towards robust statistical inference for complex computer models. Ecology Letters, 24(6), 1251-1261. https://doi.org/10.1111/ele.13728
Oikawa, P. Y., Sturtevant, C., Knox, S. H., Verfaillie, J., Huang, Y. W., & Baldocchi, D. D. (2017). Revisiting the partitioning of net ecosystem exchange of CO2 into photosynthesis and respiration with simultaneous flux measurements of 13CO2 and CO2, soil respiration and a biophysical model, CANVEG. Agricultural and Forest Meteorology, 234-235, 149-163. https://doi.org/10.1016/j.agrformet.2016.12.016
Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., … Calama, R. (2021). The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687. https://doi.org/10.1016/j.foreco.2020.118687
Paschalis, A., Fatichi, S., Zscheischler, J., Ciais, P., Bahn, M., Boysen, L., Chang, J., De Kauwe, M., Estiarte, M., Goll, D., Hanson, P. J., Harper, A. B., Hou, E., Kigel, J., Knapp, A. K., Larsen, K. S., Li, W., Lienert, S., Luo, Y., … Zhu, Q. (2020). Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand? Global Change Biology, 26(6), 3336-3355. https://doi.org/10.1111/gcb.15024
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., … Papale, D. (2020). The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3
Peltoniemi, M., Pulkkinen, M., Aurela, M., Pumpanen, J., Kolari, P., & Mäkelä, A. (2015). A semi-empirical model of boreal forest gross primary production, evapotranspiration, and soil water - Calibration and sensitivity analysis. Boreal Environment Research, 20, 151-171. http://hdl.handle.net/10138/228031
Pretzsch, H., Forrester, D. I., & Rötzer, T. (2015). Representation of species mixing in forest growth models. A review and perspective. Ecological Modelling, 313, 276-292. https://doi.org/10.1016/j.ecolmodel.2015.06.044
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rehfeldt, G. E., Crookston, N. L., Warwell, M. V., & Evans, J. S. (2006). Empirical analyses of plant-climate relationships for the western United States. International Journal of Plant Sciences, 167(6), 1123-1150.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., … Valentini, R. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
Reyer, C., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., … Frieler, K. (2020a). The PROFOUND database for evaluating vegetation models and simulating climate impacts on European forests version V. 0.3. GFZ Data Services. https://doi.org/10.5880/PIK.2020.006
Reyer, C. P. O., Lasch-Born, P., Suckow, F., Gutsch, M., Murawski, A., & Pilz, T. (2013). Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science, 71(2), 211-225. https://doi.org/10.1007/s13595-013-0306-8
Reyer, C. P. O., Silveyra Gonzalez, R., Dolos, K., Hartig, F., Hauf, Y., Noack, M., Lasch-Born, P., Rötzer, T., Pretzsch, H., Meesenburg, H., Fleck, S., Wagner, M., Bolte, A., Sanders, T. G. M., Kolari, P., Mäkelä, A., Vesala, T., Mammarella, I., Pumpanen, J., … Frieler, K. (2020b). The PROFOUND database for evaluating vegetation models and simulating climate impacts on European forests. Earth System Science Data, 12(2), 1295-1320. https://doi.org/10.5194/essd-12-1295-2020
Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G., Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., Desai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough, C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., McCaughey, H., Migliavacca, M., … Xue, Y. (2012). Terrestrial biosphere models need better representation of vegetation phenology: Results from the north American carbon program site synthesis. Global Change Biology, 18(2), 566-584. https://doi.org/10.1111/j.1365-2486.2011.02562.x
Rödig, E., Huth, A., Bohn, F., Rebmann, C., & Cuntz, M. (2017). Estimating the carbon fluxes of forests with an individual-based forest model. Forest Ecosystems, 4(1), 4. https://doi.org/10.1186/s40663-017-0091-1
Rollinson, C. R., Dawson, A., Raiho, A. M., Williams, J. W., Dietze, M. C., Hickler, T., Jackson, S. T., McLachlan, J., Moore, J. P., Poulter, B., Quaife, T., Steinkamp, J., & Trachsel, M. (2021). Forest responses to last-millennium hydroclimate variability are governed by spatial variations in ecosystem sensitivity. Ecology Letters, 24(3), 498-508. https://doi.org/10.1111/ele.13667
Rollinson, C. R., Liu, Y., Raiho, A., Moore, D. J. P., McLachlan, J., Bishop, D. A., Dye, A., Matthes, J. H., Hessl, A., Hickler, T., Pederson, N., Poulter, B., Quaife, T., Schaefer, K., Steinkamp, J., & Dietze, M. C. (2017). Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 23(7), 2755-2767. https://doi.org/10.1111/gcb.13626
Sabaté, S., Gracia, C. A., & Sánchez, A. (2002). Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. Forest Ecology and Management, 162, 23-37.
Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A., Chen, J. M., Davis, K. J., Dimitrov, D., Hilton, T. W., Hollinger, D. Y., Humphreys, E., Poulter, B., Raczka, B. M., Richardson, A. D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson, R., … Zhou, X. (2012). A model-data comparison of gross primary productivity: Results from the north American carbon program site synthesis. Journal of Geophysical Research: Biogeosciences, 117(G3), G03010. https://doi.org/10.1029/2012JG001960
Schweier, J., Molina-Herrera, S., Ghirardo, A., Grote, R., Díaz-Pinés, E., Kreuzwieser, J., Haas, E., Butterbach-Bahl, K., Rennenberg, H., Schnitzler, J.-P., & Becker, G. (2017). Environmental impacts of bioenergy wood production from poplar short-rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy, 9(7), 1207-1221. https://doi.org/10.1111/gcbb.12423
Stoy, P. C., Dietze, M. C., Richardson, A. D., Vargas, R., Barr, A. G., Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M., Cook, R. B., Gough, C. M., Grant, R. F., Hollinger, D. Y., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Law, B. E., Liu, S., … Weng, E. (2013). Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: An example using data from the north American carbon program site-level interim synthesis. Biogeosciences, 10(11), 6893-6909. https://doi.org/10.5194/bg-10-6893-2013
Thornley, J. H. M. (1970). Respiration, growth and maintenance in plants. Nature, 227(5255), 304-305. https://doi.org/10.1038/227304b0
Toïgo, M., Perot, T., Courbaud, B., Castagneyrol, B., Gégout, J.-C., Longuetaud, F., Jactel, H., & Vallet, P. (2018). Difference in shade tolerance drives the mixture effect on oak productivity. Journal of Ecology, 106(3), 1073-1082. https://doi.org/10.1111/1365-2745.12811
Toïgo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., & Canham, C. (2015). Overyielding in mixed forests decreases with site productivity. Journal of Ecology, 103(2), 502-512. https://doi.org/10.1111/1365-2745.12353
Trotsiuk, V., Hartig, F., Cailleret, M., Babst, F., Forrester, D. I., Baltensweiler, A., Buchmann, N., Bugmann, H., Gessler, A., Gharun, M., Minunno, F., Rigling, A., Rohner, B., Stillhard, J., Thurig, E., Waldner, P., Ferretti, M., Eugster, W., & Schaub, M. (2020). Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion. Global Change Biology, 26, 2463-2476. https://doi.org/10.1111/gcb.15011
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J., & Stephenson, N. L. (2021). Why is tree drought mortality so hard to predict? Trends in Ecology & Evolution, 36(6), 520-532. https://doi.org/10.1016/j.tree.2021.02.001
Vallet, P., & Pérot, T. (2018). Coupling transversal and longitudinal models to better predict Quercus petraea and Pinus sylvestris stand growth under climate change. Agricultural and Forest Meteorology, 263, 258-266.
van Oijen, M., Balkovi, J., Beer, C., Cameron, D. R., Ciais, P., Cramer, W., Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S., Soussana, J. F., Thonicke, K., Van der Velde, M., & Xu, L. (2014). Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models. Biogeosciences, 11(22), 6357-6375. https://doi.org/10.5194/bg-11-6357-2014
Wagener, T., Reinecke, R., & Pianosi, F. (2022). On the evaluation of climate change impact models. WIREs Climate Change, 13(3), e772. https://doi.org/10.1002/wcc.772
Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., … Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytologist, 229(5), 2413-2445. https://doi.org/10.1111/nph.16866
Walker, A. P., Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Asao, S., Hickler, T., Parton, W., Ricciuto, D. M., Wang, Y.-P., Wårlind, D., & Norby, R. J. (2015). Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Global Biogeochemical Cycles, 29(4), 476-495. https://doi.org/10.1002/2014GB004995
Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., & Shi, X. (2014). The north American carbon program multi-scale synthesis and terrestrial model Intercomparison project - Part 2: Environmental driver data. Geoscientific Model Development, 7(6), 2875-2893. https://doi.org/10.5194/gmd-7-2875-2014
Weisberg, M. (2007). Forty years of ‘the strategy’: Levins on model building and idealization. Biology and Philosophy, 21(5), 623-645. https://doi.org/10.1007/s10539-006-9051-9
Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279
Xenakis, G., Ray, D., & Mencuccini, M. (2008). Sensitivity and uncertainty analysis from a coupled 3-PG and soil organic matter decomposition model. Ecological Modelling, 219(1), 1-16. https://doi.org/10.1016/j.ecolmodel.2008.07.020
Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y., Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E., Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., … Norby, R. J. (2014). Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytologist, 202(3), 803-822. https://doi.org/10.1111/nph.12697
Zhang, Q., Ficklin, D. L., Manzoni, S., Wang, L., Way, D., Phillips, R. P., & Novick, K. A. (2019). Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environmental Research Letters, 14(7), 074023. https://doi.org/10.1088/1748-9326/ab2603
Zhang, Z., Zhang, R., Cescatti, A., Wohlfahrt, G., Buchmann, N., Zhu, J., Chen, G., Moyano, F., Pumpanen, J., Hirano, T., Takagi, K., & Merbold, L. (2017). Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 7(1), 3108. https://doi.org/10.1038/s41598-017-03386-5
Zhou, H., Yue, X., Lei, Y., Zhang, T., Tian, C., Ma, Y., & Cao, Y. (2021). Responses of gross primary productivity to diffuse radiation at global FLUXNET sites. Atmospheric Environment, 244, 117905. https://doi.org/10.1016/j.atmosenv.2020.117905