First Step on the Way to Identify Dermatophytes Using Odour Fingerprints
Language English Country Netherlands Media electronic
Document type Journal Article
Grant support
NU21-05-00681
Ministerstvo Zdravotnictví Ceské Republiky
START/SCI092
Univerzita Karlova v Praze
RVO: 61388971
Akademie Věd České Republiky
VP33 MycoLife - the world of fungi
Akademie Věd České Republiky
PubMed
39775995
PubMed Central
PMC11706917
DOI
10.1007/s11046-024-00905-7
PII: 10.1007/s11046-024-00905-7
Knihovny.cz E-resources
- Keywords
- Dermatophytes, Gas chromatography-mass spectrometry, Metabolite profiles, Volatile organic compounds,
- MeSH
- Arthrodermataceae * classification isolation & purification genetics MeSH
- Phylogeny * MeSH
- Humans MeSH
- Solid Phase Microextraction MeSH
- Odorants analysis MeSH
- Sheep MeSH
- Gas Chromatography-Mass Spectrometry * MeSH
- Volatile Organic Compounds * analysis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Volatile Organic Compounds * MeSH
The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes. We compared VOC profiles across different dermatophyte taxa using solid-phase microextraction (SPME) and advanced analytical methods: gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). We analyzed 47 dermatophyte strains from 15 taxa grown on sheep wool, including clinically significant species. Additionally, we examined phylogenetic relationships among the strains to correlate genetic relatedness with metabolite production. Our results showed that GC×GC-TOFMS offered superior resolution but similar differentiation of VOC profiles compared to GC-MS. VOC spectra allowed reliable distinction of taxonomic units at the species level and below, however, these distinctions showed only a slight correlation with phylogenetic data. We identified pan-dermatophyte and species- or strain-specific VOC profiles, indicating their potential for rapid, non-invasive detection of dermatophyte infections, including epidemic strains. These patterns could enable future taxa-specific identification. Our study highlights the potential of VOCs as tools for dermatophyte taxonomy and diagnosis.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
See more in PubMed
Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2–15. PubMed
Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59. PubMed PMC
Shen JJ, Arendrup MC, Verma S, Saunte DML. The emerging terbinafine-resistant Trichophyton epidemic: What is the role of antifungal susceptibility testing? Dermatology. 2022;238:60–79. PubMed
Moulíková Š, Kolařík M, Lorch JM, Kolarczyková D, Hubka V, Čmoková A. Wild rodents harbour high diversity of Arthroderma. Persoonia Mol Phylogeny Evol Fungi. 2023;50:27–47. PubMed PMC
Saunte DML, Piraccini BM, Sergeev AY, Prohić A, Sigurgeirsson B, Rodríguez-Cerdeira C, Szepietowski JC, Faergemann J, et al. A survey among dermatologists: diagnostics of superficial fungal infections—what is used and what is needed to initiate therapy and assess efficacy? J Eur Acad Dermatol Venereol. 2019;33:421–7. PubMed
Verrier J, Monod M. Diagnosis of dermatophytosis using molecular biology. Mycopathologia. 2017;182:193–202. PubMed
Gräser Y, Monod M, Bouchara JP, Dukik K, Nenoff P, Kargl A, Kupsch C, Zhan P, et al. New insights in dermatophyte research. Med Mycol. 2018;56:S2-9. PubMed
L’Ollivier C, Ranque S. MALDI-TOF-based dermatophyte identification. Mycopathologia. 2017;182:183–92. PubMed
Uhrlaß S, Wittig F, Koch D, Krüger C, Harder M, Gaajetaan G, Dingemans G, Nenoff P. Do the new molecular assays—microarray and realtime polymerase chain reaction—for dermatophyte detection keep what they promise? Hautarzt Springer Verlag. 2019;70:618–26. PubMed
Kondori N, Tehrani PA, Strömbeck L, Faergemann J. Comparison of dermatophyte PCR kit with conventional methods for detection of dermatophytes in skin specimens. Mycopathologia. 2013;176:237–41. PubMed
Paugam A, L’Ollivier C, Viguié C, Anaya L, Mary C, De Ponfilly G, Ranque S. Comparison of real-time PCR with conventional methods to detect dermatophytes in samples from patients with suspected dermatophytosis. J Microbiol Methods. 2013;95:218–22. PubMed
Wollina U, Hansel G, Uhrlaß S, Krüger C, Schönlebe J, Hipler UC, Nenoff P. Deep facial mycosis due to Trichophyton verrucosum—molecular genetic identification of the dermatophyte in paraffin-embedded tissue—case report and review of the literature. Mycoses. 2018;61:152–8. PubMed
Tartor YH, Abo Hashem ME, Enany S. Towards a rapid identification and a novel proteomic analysis for dermatophytes from human and animal dermatophytosis. Mycoses. 2019;62:1116–26. PubMed
Drerup KA, Brasch J. Successful PCR-based dermatophyte identification at species level in PAS-positive formalin-fixed skin biopsies and nail samples. JDDG - J Ger Soc Dermatology. 2023;21:789–91. PubMed
Pagans E, Font X, Sánchez A. Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration. J Hazard Mater. 2006;131:179–86. PubMed
Farraia MV, Cavaleiro Rufo J, Paciência I, Mendes F, Delgado L, Moreira A. The electronic nose technology in clinical diagnosis: a systematic review. Porto Biomed J. 2019;4: e42. PubMed PMC
Wilson AD. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors. 2018;18:15–30. PubMed PMC
Scheepers M, Al-Difaie Z, Brandts L, Peeters A, Van Grinsven B, Bouvy ND. Diagnostic performance of electronic noses in cancer diagnoses using exhaled breath: a systematic review and meta-analysis. JAMA Netw Open. 2022;5:E2219372. PubMed PMC
Wörner J, Moelleken M, Dissemond J, Pein-Hackelbusch M. Supporting wound infection diagnosis: advancements and challenges with electronic noses. Front Sensors. 2023;4:1250756.
Jenkins CL, Bean HD. Current limitations of staph infection diagnostics, and the role for VOCs in achieving culture-independent detection. Pathogens. 2023;12:181. PubMed PMC
Casalinuovo IA, Di Pierro D, Coletta M, Di Francesco P. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors. 2006;6:1428–39.
Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res. 2008;112:231–40. PubMed
Cedeño-Sanchez M, Charria-Girón E, Lambert C, Luangsa-Ard JJ, Decock C, Franke R, Brönstrup M, Stadler M. Segregation of the genus Parahypoxylon (Hypoxylaceae, Xylariales) from Hypoxylon by a polyphasic taxonomic approach. MycoKeys. 2023;95:131–62. PubMed PMC
Larsen TO, Frisvad JC. Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res. 1995;99:1153–66.
Larsen TO, Frisvad JC. Chemosystematics of Penicillium based on profiles of volatile metabolites. Mycol Res. 1995;99:1167–74.
Culberson CF, Kristinsson HD. A standardized method for the identification of lichen products. J Chromatogr A. 1970;46:85–93. PubMed
Ratiu I-A, Bocos-Bintintan V, Monedeiro F, Milanowski M, Ligor T, Buszewski B. An optimistic vision of future: diagnosis of bacterial infections by sensing their associated volatile organic compounds. Crit Rev Anal Chem. 2020;50:501–12. PubMed
Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, Rearden P, Comolli JC, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59:1733–40. PubMed PMC
Rees CA, Stefanuto PH, Beattie SR, Bultman KM, Cramer RA, Hill JE. Sniffing out the hypoxia volatile metabolic signature of Aspergillus fumigatus. J Breath Res. 2017;11: 036003. PubMed PMC
Bastos ML, Benevides CA, Zanchettin C, Menezes FD, Inácio CP, de Lima Neto RG, Filho JGAT, Neves RP, Almeida LM. Breaking barriers in Candida spp. detection with electronic noses and artificial intelligence. Sci Rep. 2024. 10.1038/s41598-023-50332-9. PubMed PMC
Li Y, Wei X, Zhou Y, Wang J, You R. Research progress of electronic nose technology in exhaled breath disease analysis. Microsyst Nanoeng. 2023;9:1–22. PubMed PMC
Sahgal N, Magan N. Fungal volatile fingerprints: discrimination between dermatophyte species and strains by means of an electronic nose. Sensors Actuators, B Chem. 2008;131:117–20.
Sahgal N, Monk B, Wasil M, Magan N. Trichophyton species: use of volatile fingerprints for rapid identification and discrimination. Br J Dermatol. 2006;155:1209–16. PubMed
Matysik S, Herbarth O, Mueller A. Determination of microbial volatile organic compounds (MVOCs) by passive sampling onto charcoal sorbents. Chemosphere. 2009;76:114–9. PubMed
Bean HD, Dimandja JMD, Hill JE. Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2012;901:41–6. PubMed PMC
Rees CA, Burklund A, Stefanuto PH, Schwartzman JD, Hill JE. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J Breath Res. 2018;12:26001. PubMed PMC
Prebihalo SE, Berrier KL, Freye CE, Bahaghighat HD, Moore NR, Pinkerton DK, et al. Multidimensional gas chromatography: advances in instrumentation, chemometrics, and applications. Anal Chem Am Chem Soc. 2018;90:505–32. PubMed
Zou Y, Gaida M, Franchina FA, Stefanuto PH, Focant JF. Distinguishing between decaffeinated and regular coffee by HS-SPME-GC×GC-TOFMS, chemometrics, and machine learning. Molecules. 2022;27:1806. PubMed PMC
Semerád J, Moeder M, Filip J, Pivokonský M, Filipová A, Cajthaml T. Oxidative stress in microbes after exposure to iron nanoparticles: analysis of aldehydes as oxidative damage products of lipids and proteins. Environ Sci Pollut Res. 2019;26:33670–82. PubMed
Wenig P, Odermatt J. OpenChrom: a cross-platform open source software for the mass spectrometric analysis of chromatographic data. BMC Bioinform. 2010;11:1–9. PubMed PMC
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–90. PubMed
Team Core R. RA language and environment for statistical computing, R Foundation for Statistical. Computing. Vienna, Austria, 2022.
Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21:1–20.
Suzuki R, Terada Y, Shimodaira H. pvclust: hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 2.2. 2019.
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25:1–18.
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. PubMed
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
Kassambara A, Mundt F. factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. 2020.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.
Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.
Garnier S, Ross N, Rudis R, Camargo AP, Sciaini M, Scherer C. Rvision—Colorblind-friendly color maps for R. R package version 0.6.2. 2021.
Auguie B. gridExtra: Miscellaneous functions for ‘Grid’ graphics. R package version 2.3. 2017.
Wilke C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1. 2020.
Liu Y, Wang Y, Zhang J. New machine learning algorithm: random forest. Lect Notes Comput Sci (incl Subser Lect Notes Artif Intell Lect Notes Bioinform). 2012;7473:246–52.
Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, et al. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. Fungal Divers. 2020;104:333–87.
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2018;20:1160–6. PubMed PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3. PubMed
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R, Teeling E. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4. PubMed PMC
Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6. PubMed PMC
Čmoková A, Rezaei-Matehkolaei A, Kuklová I, Kolařík M, Shamsizadeh F, Ansari S, Gharaghani M, Miňovská V. Discovery of new Trichophyton members, T. persicum and T. spiraliforme spp. nov., as a cause of highly inflammatory tinea cases in Iran and Czechia. Microbiol Spectr. 2021. 10.1128/SPECTRUM.00284-21. PubMed PMC
Čmoková A, Kolařík M, Guillot J, Risco-Castillo V, Cabañes FJ, Nenoff P, Uhrlaß S, Dobiáš R, et al. Host-driven subspeciation in the hedgehog fungus, T. erinacei, an emerging cause of human dermatophytosis. Persoonia Mol Phylogeny Evol Fungi. 2022;48:203–8. PubMed PMC
Švarcová M, Větrovský T, Kolařík M, Hubka V. Defining the relationship between phylogeny, clinical manifestation, and phenotype for Trichophyton mentagrophytes/interdigitale complex; a literature review and taxonomic recommendations. Med Mycol. 2023;61:42. PubMed PMC
Aboul-Ella H, Hamed R, Abo-Elyazeed H. Recent trends in rapid diagnostic techniques for dermatophytosis. Int J Vet Sci Med. 2020;8:115–23. PubMed PMC
Aboul-Ella H, Sayed RH, Abo-Elyazeed HS. Development, preparation, and evaluation of a novel dotted lateral flow immunochromatographic kit for rapid diagnosis of dermatophytosis. Sci Rep. 2023. 10.1038/s41598-023-27443-4. PubMed PMC
Begum J, Mir NA, Lingaraju MC, Buyamayum B, Dev K. Recent advances in the diagnosis of dermatophytosis. J Basic Microbiol. 2020;60:293–303. PubMed
Castro MCA, Almeida LM, Ferreira RWM, Benevides CA, Zanchettin C, Menezes FD, Inacio CP, De Lima-Neto RG, et al. Breakthrough of clinical Candida cultures identification using the analysis of volatile organic compounds and artificial intelligence methods. IEEE Sens J. 2022;22:12493–503.
Kano R, Kimura U, Kakurai M, Hiruma J, Kamata H, Suga Y, Harada K. Trichophyton indotineae sp. nov.: a new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia. 2020;185:947–58. PubMed
Batvandi A, Pchelin IM, Kiasat N, Kharazi M, Mohammadi R, Zomorodian K, Rezaei-Matehkolaei A. Time and cost-efficient identification of Trichophyton indotineae. Mycoses. 2023;66:75–81. PubMed
Guo Y, Jud W, Weikl F, Ghirardo A, Junker RR, Polle A, Benz JP, Pritsch K, Schnitzler JP, Rosenkranz M. Volatile organic compound patterns predict fungal trophic mode and lifestyle. Commun Biol. 2021. 10.1038/s42003-021-02198-8. PubMed PMC
Gualtieri L, Monti MM, Mele F, Russo A, Pedata PA, Ruocco M. Volatile organic compound (VOC) profiles of different Trichoderma species and their potential application. J Fungi. 2022. 10.3390/jof8100989. PubMed PMC
Fiedler N, Laumbach R, Kelly-McNeil K, Lioy P, Fan ZH, Zhang J, Ottenweller J, Ohman-Strickland P, Kipen H. Health effects of a mixture of indoor air volatile organics, their ozone oxidation products, and stress. Environ Health Perspect. 2005;113:1542–8. PubMed PMC
Nilsson A, Kihlström E, Lagesson V, Wessén B, Szponar B, Larsson L, Tagesson C. Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air. 2004;14:74–82. PubMed
Pasanen P, Korpi A, Kalliokoski P, Pasanen AL. Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int. 1997;23:425–32.
Hay JB, Mills SC. The migration of sebum and suint components along wool fibres of Merino sheep. Aust J Agric Res. 1982;33:817–25.
Elling L, Zahn H. Characterization of proteinaceous contaminants extracted from scoured wool and wool top. Text Res J. 1989;59:460–3.
Fawzi EM, Abd-Elmegeed MM, El-Mekkawi MF, El-Diasty EM, Morsi AM, Abd-Elfatah EB. Prevalence and some risk factors with therapeutic trial of sheep dermatophytosis in Egypt. Iraqi J Vet Sci. 2023;37:31–8.
Dalis J, Kazeem H, Chah K. Occurrence of dermatophytosis among sheep and goats in Zaria. Nigeria Sokoto J Vet Sci. 2023;21:89–95.