Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth

. 2025 Jan ; 48 (1) : 451-469. [epub] 20240913

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39267452

Grantová podpora
CZ.02.01.01/00/22_008/0004581 Ministerstvo Školství, Mládeže a Tělovýchovy
8J19FR001 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023050Czech-BioImaging Ministerstvo Školství, Mládeže a Tělovýchovy
415322 Grantová Agentura, Univerzita Karlova
287423 Grantová Agentura, Univerzita Karlova
20-11642S Grantová Agentura České Republiky
803048 European Research Council - International

Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.

Zobrazit více v PubMed

Aslam, S.N. , Erbs, G. , Morrissey, K.L. , Newman, M.‐A. , Chinchilla, D. , Boller, T. et al. (2009) Microbe‐associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 10, 375–387. Available from: 10.1111/j.1364-3703.2009.00537.x PubMed DOI PMC

Badri, D.V. , Loyola‐Vargas, V.M. , Du, J. , Stermitz, F.R. , Broeckling, C.D. , Iglesias‐Andreu, L. et al. (2008) Transcriptome analysis of arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytologist, 179, 209–223. Available from: 10.1111/j.1469-8137.2008.02458.x PubMed DOI

Baluška, F. , Salaj, J. , Mathur, J. , Braun, M. , Jasper, F. , Šamaj, J. et al. (2000) Root hair formation: F‐actin‐dependent tip growth is initiated by local assembly of profilin‐supported F‐actin meshworks accumulated within expansin‐enriched bulges. Developmental Biology, 227, 618–632. Available from: 10.1006/dbio.2000.9908 PubMed DOI

Baumberger, N. , Steiner, M. , Ryser, U. , Keller, B. & Ringli, C. (2003) Synergistic interaction of the two paralogous arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. The Plant Journal, 35, 71–81. Available from: 10.1046/j.1365-313x.2003.01784.x PubMed DOI

Brejšková, L. , Hála, M. , Rawat, A. , Soukupová, H. , Cvrčková, F. , Charlot, F. et al. (2021) SEC6 exocyst subunit contributes to multiple steps of growth and development ofPhyscomitrella(Physcomitrium patens). The Plant Journal, 106, 831–843. Available from: 10.1111/tpj.15205 PubMed DOI

Brost, C. , Studtrucker, T. , Reimann, R. , Denninger, P. , Czekalla, J. , Krebs, M. et al. (2019) Multiple cyclic nucleotide‐gated channels coordinate calcium oscillations and polar growth of root hairs. The Plant Journal, 99, 910–923. Available from: 10.1111/tpj.14371 PubMed DOI

Cai, G. , Faleri, C. , Del Casino, C. , Emons, A.M.C. & Cresti, M. (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiology, 155, 1169–1190. Available from: 10.1104/pp.110.171371 PubMed DOI PMC

Carol, R.J. & Dolan, L. (2002) Building a hair: tip growth in Arabidopsis thaliana root hairs. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 815–821. Available from: 10.1098/rstb.2002.1092 PubMed DOI PMC

Cavalier, D.M. , Lerouxel, O. , Neumetzler, L. , Yamauchi, K. , Reinecke, A. , Freshour, G. et al. (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. The Plant Cell, 20, 1519–1537. Available from: 10.1105/tpc.108.059873 PubMed DOI PMC

Chin, K. , DeFalco, T.A. , Moeder, W. & Yoshioka, K. (2013) The arabidopsis cyclic nucleotide‐gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Physiology, 163, 611–624. Available from: 10.1104/pp.113.225680 PubMed DOI PMC

Chuberre, C. , Plancot, B. , Driouich, A. , Moore, J.P. , Bardor, M. & Gügi, B. et al. (2018) Plant immunity is compartmentalized and specialized in roots. Frontiers in Plant Science, 9, 1692. Available from: 10.3389/fpls.2018.01692 PubMed DOI PMC

Cove, D.J. , Perroud, P.‐F. , Charron, A.J. , McDaniel, S.F. , Khandelwal, A. & Quatrano, R.S. (2009) Culturing the moss physcomitrella patens . Cold Spring Harbor Protocols, 2009, pdb.prot5136. Available from: 10.1101/pdb.prot5136 PubMed DOI

Cui, W. & Lee, J.‐Y. (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nature Plants, 2, 16034. Available from: 10.1038/nplants.2016.34. PubMed DOI

Dehors, J. , Mareck, A. , Kiefer‐Meyer, M.‐C. , Menu‐Bouaouiche, L. , Lehner, A. & Mollet, J.‐C. (2019) Evolution of cell wall polymers in tip‐growing land plant gametophytes: composition, distribution, functional aspects and their remodeling. Frontiers in Plant Science, 10, 441. Available from: 10.3389/fpls.2019.00441 PubMed DOI PMC

Denoux, C. , Galletti, R. , Mammarella, N. , Gopalan, S. , Werck, D. , De Lorenzo, G. et al. (2008) Activation of defense response pathways by OGs and Flg22 elicitors in arabidopsis seedlings. Molecular Plant, 1, 423–445. Available from: 10.1093/mp/ssn019 PubMed DOI PMC

Dolan, L. (1996) Pattern in the root epidermis: an interplay of diffusible signals and cellular geometry. Annals of Botany, 77, 547–553. Available from: 10.1006/anbo.1996.0069 DOI

Epel, B.L. (2009) Plant viruses spread by diffusion on ER‐associated movement‐protein‐rafts through plasmodesmata gated by viral induced host β‐1,3‐glucanases. Seminars in Cell & Developmental Biology, 20, 1074–1081. Available from: 10.1016/j.semcdb.2009.05.010 PubMed DOI

Evans, N. , Hoyne, P. & Stone, B. (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (sirofluor) with polysaccharides. Carbohydrate Polymers, 4, 215–230. Available from: 10.1016/0144-8617(84)90012-2 DOI

Fernandez, A.I. & Beeckman, T. (2020) An MAP kinase cascade downstream of RGF/GLV peptides and their RGI receptors regulates root development. Molecular Plant, 13, 1542–1544. Available from: 10.1016/j.molp.2020.10.009 PubMed DOI

Galway, M.E. , Eng, R.C. , Schiefelbein, J.W. & Wasteneys, G.O. (2011) Root hair‐specific disruption of cellulose and xyloglucan in AtCSLD3 mutants, and factors affecting the post‐rupture resumption of mutant root hair growth. Planta, 233, 985–999. Available from: 10.1007/s00425-011-1355-6 PubMed DOI

Gamborg, O.L. , Miller, R.A. & Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158. Available from: 10.1016/0014-4827(68)90403-5 PubMed DOI

German, L. , Yeshvekar, R. & Benitez‐Alfonso, Y. (2023) Callose metabolism and the regulation of cell walls and plasmodesmata during plant mutualistic and pathogenic interactions. Plant, Cell & Environment, 46, 391–404. Available from: 10.1111/pce.14510 PubMed DOI PMC

Gómez‐Gómez, L. , Felix, G. & Boller, T. (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana . The Plant Journal, 18, 277–284. Available from: 10.1046/j.1365-313x.1999.00451.x PubMed DOI

Herburger, K. & Holzinger, A. (2015) Localization and quantification of callose in the streptophyte Green algae zygnema and klebsormidium: correlation with desiccation tolerance. Plant and Cell Physiology, 56, 2259–2270. Available from: 10.1093/pcp/pcv139 PubMed DOI PMC

Huang, D. , Sherman, B.T. , Tan, Q. , Collins, J.R. , Alvord, W.G. , Roayaei, J. et al. (2007) The DAVID gene functional classification tool: a novel biological module‐centric algorithm to functionally analyze large gene lists. Genome Biology, 8, R183. Available from: 10.1186/gb-2007-8-9-r183 PubMed DOI PMC

Ichikawa, M. , Hirano, T. , Enami, K. , Fuselier, T. , Kato, N. , Kwon, C. et al. (2014) Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana . Plant and Cell Physiology, 55, 790–800. Available from: 10.1093/pcp/pcu048 PubMed DOI

Iriti, M. , Sironi, M. , Gomarasca, S. , Casazza, A.P. , Soave, C. & Faoro, F. (2006) Cell death‐mediated antiviral effect of chitosan in tobacco. Plant Physiology and Biochemistry, 44, 893–900. Available from: 10.1016/j.plaphy.2006.10.009 PubMed DOI

Ishiga, Y. , Ishiga, T. , Uppalapati, S.R. & Mysore, K.S. (2011) Arabidopsis seedling flood‐inoculation technique: a rapid and reliable assay for studying plant‐bacterial interactions. Plant Methods, 7, 32. Available from: 10.1186/1746-4811-7-32 PubMed DOI PMC

Jacobs, A.K. , Lipka, V. , Burton, R.A. , Panstruga, R. , Strizhov, N. , Schulze‐Lefert, P. et al. (2003) An arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. The Plant Cell, 15, 2503–2513. Available from: 10.1105/tpc.016097 PubMed DOI PMC

Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329. Available from: 10.1038/nature05286 PubMed DOI

Keinath, N.F. , Waadt, R. , Brugman, R. , Schroeder, J.I. , Grossmann, G. , Schumacher, K. et al. (2015) Live cell imaging with R‐GECO1 sheds light on flg22‐ and Chitin‐Induced transient [Ca2+]cyt patterns in arabidopsis. Molecular Plant, 8, 1188–1200. Available from: 10.1016/j.molp.2015.05.006 PubMed DOI PMC

Kemmerling, B. , Schwedt, A. , Rodriguez, P. , Mazzotta, S. , Frank, M. , Qamar, S.A. et al. (2007) The BRI1‐associated kinase 1, BAK1, has a brassinolide‐independent role in plant cell‐death control. Current Biology, 17, 1116–1122. Available from: 10.1016/j.cub.2007.05.046 PubMed DOI

Ks, R. , Ra, L. , Rd, W. , Ha, O. & A, M. (2020) Callose in sporogenesis: novel composition of the inner spore wall in hornworts. Plant systematics and evolution = Entwicklungsgeschichte und Systematik der Pflanzen, 306, 16. Available from: 10.1007/s00606-020-01631-5 PubMed DOI PMC

Kubátová, Z. , Pejchar, P. , Potocký, M. , Sekereš, J. , Žárský, V. & Kulich, I. (2019) Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. International Journal of Molecular Sciences, 20, 3803. Available from: 10.3390/ijms20153803 PubMed DOI PMC

Kulich, I. , Vojtíková, Z. , Glanc, M. , Ortmannová, J. , Rasmann, S. & Žárský, V. (2015) Cell wall maturation of arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiology, 168, 120–131. Available from: 10.1104/pp.15.00112 PubMed DOI PMC

Ladwig, F. , Dahlke, R.I. , Stührwohldt, N. , Hartmann, J. , Harter, K. & Sauter, M. (2015) Phytosulfokine regulates growth in arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide‐gated channel17, H+‐ATPase, and BAK1. The Plant Cell, 27, 1718–1729. Available from: 10.1105/tpc.15.00306 PubMed DOI PMC

Lopez‐Moya, F. , Escudero, N. , Zavala‐Gonzalez, E.A. , Esteve‐Bruna, D. , Blázquez, M.A. , Alabadí, D. et al. (2017) Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in arabidopsis exposed to chitosan. Scientific Reports, 7, 16813. Available from: 10.1038/s41598-017-16874-5. PubMed DOI PMC

Luna, E. , Pastor, V. , Robert, J. , Flors, V. , Mauch‐Mani, B. & Ton, J. (2011) Callose deposition: a multifaceted plant defense response. Molecular Plant‐Microbe Interactions®, 24, 183–193. Available from: 10.1094/MPMI-07-10-0149 PubMed DOI

Ma, X. , Wu, Y. & Zhang, G. (2021) Formation pattern and regulatory mechanisms of pollen wall in arabidopsis. Journal of Plant Physiology, 260, 153388. Available from: 10.1016/j.jplph.2021.153388. PubMed DOI

Mendrinna, A. & Persson, S. (2015) Root hair growth: it's a one way street. F1000Prime Reports, 7, 23. Available from: 10.12703/P7-23 PubMed DOI PMC

Meyer, D. , Pajonk, S. , Micali, C. , O'Connell, R. & Schulze‐Lefert, P. (2009) Extracellular transport and integration of plant secretory proteins into pathogen‐induced cell wall compartments. The Plant Journal, 57, 986–999. Available from: 10.1111/j.1365-313X.2008.03743.x PubMed DOI

Millet, Y.A. , Danna, C.H. , Clay, N.K. , Songnuan, W. , Simon, M.D. , Werck‐Reichhart, D. et al. (2010) Innate immune responses activated in arabidopsis roots by microbe‐associated molecular patterns. The Plant Cell, 22, 973–990. Available from: 10.1105/tpc.109.069658 PubMed DOI PMC

Miya, A. , Albert, P. , Shinya, T. , Desaki, Y. , Ichimura, K. , Shirasu, K. et al. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in arabidopsis. Proceedings of the National Academy of Sciences, 104, 19613–19618. Available from: 10.1073/pnas.0705147104 PubMed DOI PMC

Morello, G. , De Iaco, G. , Gigli, G. , Polini, A. & Gervaso, F. (2023) Chitosan and pectin hydrogels for tissue engineering and in vitro modeling. Gels, 9, 132. Available from: 10.3390/gels9020132 PubMed DOI PMC

Motomura, K. , Sugi, N. , Takeda, A. , Yamaoka, S. & Maruyama, D. (2022) Possible molecular mechanisms of persistent pollen tube growth without de novo transcription. Frontiers in Plant Science, 13, 1020306. Available from: 10.3389/fpls.2022.1020306. PubMed DOI PMC

Mravec, J. , Kračun, S.K. , Rydahl, M.G. , Westereng, B. , Miart, F. , Clausen, M.H. et al. (2014) Tracking developmentally regulated post‐synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development, 141, 4841–4850. Available from: 10.1242/dev.113365 PubMed DOI

Müller, K. , Dobrev, P.I. , Pěnčík, A. , Hošek, P. , Vondráková, Z. , Filepová, R. et al. (2021) DIOXYGENASE FOR AUXIN OXIDATION 1 catalyzes the oxidation of IAA amino acid conjugates. Plant Physiology, 187, 103–115. Available from: 10.1093/plphys/kiab242 PubMed DOI PMC

Ngou, B.P.M. , Ahn, H.‐K. , Ding, P. & Jones, J.D.G. (2021) Mutual potentiation of plant immunity by cell‐surface and intracellular receptors. Nature, 592, 110–115. Available from: 10.1038/s41586-021-03315-7 PubMed DOI

Okada, K. , Kubota, Y. , Hirase, T. , Otani, K. , Goh, T. , Hiruma, K. et al. (2021) Uncoupling root hair formation and defence activation from growth inhibition in response to damage‐associated pep peptides in Arabidopsis thaliana . New Phytologist, 229, 2844–2858. Available from: 10.1111/nph.17064 PubMed DOI

Okada, K , Yachi, K , Nguyen, T.A.N. , Kanno, S , Tateda, C , Lee, T‐H et al. (2024) Defense‐related callose synthase PMR4 promotes root hair callose deposition and adaptation to phosphate deficiency in Arabidopsis thaliana . bioRxiv. [Preprint] Available from: 10.1101/2023.07.05.547890 PubMed DOI PMC

Ortmannová, J. , Sekereš, J. , Kulich, I. , Šantrůček, J. , Dobrev, P. , Žárský, V. et al. (2022) Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. Journal of Experimental Botany, 73, 742–755. Available from: 10.1093/jxb/erab457 PubMed DOI

Park, S. , Szumlanski, A.L. , Gu, F. , Guo, F. & Nielsen, E. (2011) A role for CSLD3 during cell‐wall synthesis in apical plasma membranes of tip‐growing root‐hair cells. Nature Cell Biology, 13, 973–980. Available from: 10.1038/ncb2294 PubMed DOI

Parker, J.S. , Cavell, A.C. , Dolan, L. , Roberts, K. & Grierson, C.S. (2000) Genetic interactions during root hair morphogenesis in arabidopsis. The Plant Cell, 12, 1961–1974. Available from: 10.1105/tpc.12.10.1961 PubMed DOI PMC

Paterlini, A. , Sechet, J. , Immel, F. , Grison, M.S. , Pilard, S. , Pelloux, J. et al. (2022) Enzymatic fingerprinting reveals specific xyloglucan and pectin signatures in the cell wall purified with primary plasmodesmata. Frontiers in Plant Science, 13, 1020506. PubMed PMC

Pečenková, T. , Janda, M. , Ortmannová, J. , Hajná, V. , Stehlíková, Z. & Žárský, V. (2017) Early arabidopsis root hair growth stimulation by pathogenic strains of pseudomonas syringae. Annals of Botany, 120, 437–446. Available from: Available from: 10.1093/aob/mcx073 PubMed DOI PMC

Pečenková, T. , Potocká, A. , Potocký, M. , Ortmannová, J. , Drs, M. , Janková Drdová, E. et al. (2020) Redundant and diversified roles among selected Arabidopsis thaliana EXO70 paralogs during biotic stress responses. Frontiers in Plant Science, 11, 960960. Available from: 10.3389/fpls.2020.00960 PubMed DOI PMC

Porter, K. & Day, B. (2016) From filaments to function: the role of the plant actin cytoskeleton in pathogen perception, signaling and immunity. Journal of Integrative Plant Biology, 58, 299–311. Available from: 10.1111/jipb.12445 PubMed DOI

Qi, L. , Kwiatkowski, M. , Kulich, I. , Chen, H. , Gao, Y. , Yun, P. et al. (2023) Guanylate cyclase activity of TIR1/AFB auxin receptors in rapid auxin responses. bioRxiv. Available from: 10.1101/2023.11.18.567481 DOI

Rentel, M.C. , Lecourieux, D. , Ouaked, F. , Usher, S.L. , Petersen, L. , Okamoto, H. et al. (2004) OXI1 kinase is necessary for oxidative burst‐mediated signalling in arabidopsis. Nature, 427, 858–861. [Preprint] Available from: 10.1038/nature02353 PubMed DOI

Rich‐Griffin, C. , Eichmann, R. , Reitz, M.U. , Hermann, S. , Woolley‐Allen, K. , Brown, P.E. et al. (2020) Regulation of cell type‐specific immunity networks in arabidopsis roots. The Plant Cell, 32, 2742–2762. Available from: 10.1105/TPC.20.00154 PubMed DOI PMC

Ringli, C. , Baumberger, N. , Diet, A. , Frey, B. & Keller, B. (2002) ACTIN2 is essential for bulge site selection and tip growth during root hair development of arabidopsis. Plant Physiology, 129, 1464–1472. Available from: 10.1104/pp.005777 PubMed DOI PMC

Rounds, C.M. & Bezanilla, M. (2013) Growth mechanisms in tip‐growing plant cells. Annual review of plant biology, 64, 243–265. Available from: 10.1146/annurev-arplant-050312-120150 PubMed DOI

Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. et al. (2012) Fiji: an open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682. PubMed PMC

Schoenaers, S. , Lee, H.K. , Gonneau, M. , Faucher, E. , Levasseur, T. , Akary, E. et al. (2024) Rapid alkalinization factor 22 has a structural and signalling role in root hair cell wall assembly. Nature Plants, 10, 494–511. Available from: 10.1038/s41477-024-01637-8 PubMed DOI PMC

Serre, N.B.C. , Kralík, D. , Yun, P. , Slouka, Z. , Shabala, S. & Fendrych, M. (2021) AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nature Plants, 7, 1229–1238. Available from: 10.1038/s41477-021-00969-z PubMed DOI PMC

Shih, H.W. , Depew, C.L. , Miller, N.D. & Monshausen, G.B. (2015) The cyclic nucleotide‐gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana . Current Biology, 25, 3119–3125. Available from: 10.1016/j.cub.2015.10.025 PubMed DOI

Sun, H. , Zhu, X. , Li, C. , Ma, Z. , Han, X. , Luo, Y. et al. (2021) Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nature Communications, 12, 4064. Available from: 10.1038/s41467-021-24375-3 PubMed DOI PMC

Suwanchaikasem, P. , Idnurm, A. , Selby‐Pham, J. , Walker, R. & Boughton, B.A. (2022) Root‐TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of cannabis sativa . Plant Methods, 18, 46. Available from: 10.1186/s13007-022-00875-1 PubMed DOI PMC

Torres, M.A. , Dangl, J.L. & Jones, J.D. (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517–522. Available from: 10.1073/pnas.012452499 PubMed DOI PMC

Toyota, M. , Spencer, D. , Sawai‐Toyota, S. , Jiaqi, W. , Zhang, T. , Koo, A.J. et al. (2018) Glutamate triggers long‐distance, calcium‐based plant defense signaling. Science, 361, 1112–1115. Available from: 10.1126/science.aat7744 PubMed DOI

Uemura, T. , Yoshimura, S.H. , Takeyasu, K. & Sato, M.H. (2002) Vacuolar membrane dynamics revealed by GFP‐AtVam3 fusion protein. Genes to Cells, 7, 743–753. Available from: 10.1046/j.1365-2443.2002.00550.x PubMed DOI

Ušák, D. , Haluška, S. & Pleskot, R. (2023) Callose synthesis at the center point of plant development‐an evolutionary insight. Plant Physiology, 193(1), 54–69. Available from: 10.1093/plphys/kiad274 PubMed DOI

Vaškebová, L. , Šamaj, J. & Ovecka, M. (2018) Single‐point ACT2 gene mutation in the arabidopsis root hair mutant der1‐3 affects overall actin organization, root growth and plant development. Annals of Botany, 122, 889–901. Available from: 10.1093/aob/mcx180 PubMed DOI PMC

Verma, D.P.S. & Hong, Z. (2001) Plant callose synthase complexes. Plant Molecular Biology, 47, 693–701. Available from: 10.1023/a:1013679111111 PubMed DOI

Vissenberg, K. , Claeijs, N. , Balcerowicz, D. & Schoenaers, S. (2020) Hormonal regulation of root hair growth and responses to the environment in arabidopsis. Journal of Experimental Botany, 71, 2412–2427. Available from: 10.1093/JXB/ERAA048 PubMed DOI PMC

Vogel, J. & Somerville, S. (2000) Isolation and characterization of powdery mildew‐resistant arabidopsis mutants. Proceedings of the National Academy of Sciences, 97, 1897–1902. Available from: 10.1073/pnas.030531997 PubMed DOI PMC

Walter, W. , Sánchez‐Cabo, F. & Ricote, M. (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics, 31, 2912–2914. Available from: 10.1093/bioinformatics/btv300 PubMed DOI

Wan, J. , Tanaka, K. , Zhang, X.‐C. , Son, G.H. , Brechenmacher, L. , Nguyen, T.H.N. et al. (2012) LYK4, a lysin motif receptor‐like kinase, is important for chitin signaling and plant innate immunity in arabidopsis. Plant Physiology, 160, 396–406. Available from: 10.1104/pp.112.201699 PubMed DOI PMC

Wang, X. , Wang, K. , Yin, G. , Liu, X. , Liu, M. , Cao, N. et al. (2018) Pollen‐expressed leucine‐rich repeat extensins are essential for pollen germination and growth. Plant Physiology, 176, 1993–2006. Available from: 10.1104/pp.17.01241 PubMed DOI PMC

Wang, Y.‐S. , Motes, C.M. , Mohamalawari, D.R. & Blancaflor, E.B. (2004) Green fluorescent protein fusions to arabidopsis fimbrin 1 for spatio‐temporal imaging of F‐actin dynamics in roots. Cell Motility, 59, 79–93. Available from: 10.1002/cm.20024 PubMed DOI

Ye, W. , Munemasa, S. , Shinya, T. , Wu, W. , Ma, T. , Lu, J. et al. (2020) Stomatal immunity against fungal invasion comprises not only chitin‐induced stomatal closure but also chitosan‐induced guard cell death. Proceedings of the National Academy of Sciences, 117, 20932–20942. Available from: 10.1073/pnas.1922319117 PubMed DOI PMC

Yoo, S.‐D. , Cho, Y.‐H. & Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572. Available from: 10.1038/nprot.2007.199 PubMed DOI

Yuan, P. , Jauregui, E. , Du, L. , Tanaka, K. & Poovaiah, B. (2017) Calcium signatures and signaling events orchestrate plant–microbe interactions. Current Opinion in Plant Biology, 38, 173–183. Available from: 10.1016/j.pbi.2017.06.003 PubMed DOI

Zamioudis, C. , Mastranesti, P. , Dhonukshe, P. , Blilou, I. & Pieterse, C.M.J. (2013) Unraveling root developmental programs initiated by beneficial pseudomonas spp. bacteria. Plant Physiology, 162, 304–318. Available from: 10.1104/pp.112.212597 PubMed DOI PMC

Zhang, J. , Li, Y. , Bao, Q. , Wang, H. & Hou, S. (2022) Plant elicitor peptide 1 fortifies root cell walls and triggers a systemic root‐to‐shoot immune signaling in arabidopsis. Plant Signaling & Behavior, 17, 2034270. Available from: 10.1080/15592324.2022.2034270. PubMed DOI PMC

Zhang, M. & Zhang, S. (2022) Mitogen‐activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 64, 301–341. Available from: 10.1111/jipb.13215 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace