callose OR C048306 Dotaz Zobrazit nápovědu
Biogenesis of the plant secondary cell wall involves many important aspects, such as phenolic compound deposition and often silica encrustation. Previously, we demonstrated the importance of the exocyst subunit EXO70H4 for biogenesis of the trichome secondary cell wall, namely for deposition of the autofluorescent and callose-rich cell wall layer. Here, we reveal that EXO70H4-driven cell wall biogenesis is constitutively active in the mature trichome, but also can be activated elsewhere upon pathogen attack, giving this study a broader significance with an overlap into phytopathology. To address the specificity of EXO70H4 among the EXO70 family, we complemented the exo70H4-1 mutant by 18 different Arabidopsis (Arabidopsis thaliana) EXO70 paralogs subcloned under the EXO70H4 promoter. Only EXO70H4 had the capacity to rescue the exo70H4-1 trichome phenotype. Callose deposition phenotype of exo70H4-1 mutant is caused by impaired secretion of PMR4, a callose synthase responsible for the synthesis of callose in the trichome. PMR4 colocalizes with EXO70H4 on plasma membrane microdomains that do not develop in the exo70H4-1 mutant. Using energy-dispersive x-ray microanalysis, we show that both EXO70H4- and PMR4-dependent callose deposition in the trichome are essential for cell wall silicification.
- MeSH
- Arabidopsis účinky léků genetika metabolismus MeSH
- buněčná membrána účinky léků metabolismus MeSH
- buněčná stěna účinky léků metabolismus MeSH
- epidermis rostlin cytologie účinky léků metabolismus MeSH
- fenotyp MeSH
- flagelin farmakologie MeSH
- glukany MeSH
- glukosyltransferasy metabolismus MeSH
- mutace genetika MeSH
- oxid křemičitý metabolismus MeSH
- podjednotky proteinů chemie metabolismus MeSH
- proteinové domény MeSH
- proteiny huseníčku chemie metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- trichomy metabolismus MeSH
- upregulace účinky léků MeSH
- vezikulární transportní proteiny chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.
- MeSH
- Arabidopsis metabolismus účinky záření ultrastruktura MeSH
- buněčná stěna metabolismus ultrastruktura MeSH
- cytokineze účinky záření MeSH
- fluorescence MeSH
- glukany metabolismus MeSH
- měď metabolismus MeSH
- mutace genetika MeSH
- podjednotky proteinů metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- trichomy metabolismus účinky záření ultrastruktura MeSH
- ultrafialové záření MeSH
- vezikulární transportní proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The neural architecture of the corpus callosum shows pronounced inter-individual differences. These differences are thought to affect timing of interhemispheric interactions and, in turn, functional hemispheric asymmetries. The present study aimed at elucidating the neuronal mechanisms underlying this relationship. To this end, we used a combined DTI and EEG study design. In 103 right-handed and healthy adult participants, we determined the microstructural integrity of the posterior third of the corpus callosum and examined in how far this microstructural integrity was related to between-hemisphere timing differences in neurophysiological correlates of attentional processes in the dichotic listening task. The results show that microstructural integrity of the posterior callosal third correlated with attentional timing differences in a verbal dichotic listening condition but not in a noise control condition. Hence, this association between callosal microstructure and between-hemisphere timing differences is specific for stimuli, which trigger hemispheric bottom-up processing in an asymmetric fashion. Specifically, higher microstructural integrity was associated with decreased left-right differences in the latency of the N1 event-related potential component and hence more symmetric processing of dichotic stimuli between the two hemispheres. Our data suggest that microstructure of the posterior callosal third affects functional hemispheric asymmetries by modulating the timing of interhemispheric interactions.
- MeSH
- corpus callosum fyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- funkční lateralita fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primary endpoint of this single-centre, prospective consecutive cohort study was to evaluate DESH score, CA, CSS and Evans index of suspected iNPH patients against the reference standard of lumbar infusion test (LIT) and external lumbar drainage (ELD) in prediction of gait response after VP shunt implantation in patients with idiopathic normal pressure hydrocephalus (iNPH). Patients were assigned to NPH and non-NPH groups based on LIT and ELD results. Age-matched controls were added for group comparison. 32 NPH, 46 non-NPH and 15 control subjects were enrolled in the study. There were significant differences in mean preoperative DESH scores of NPH, non-NPH and control groups (6.3 ± 2.3 ([±SD]) (range 2-10) vs 4.5 ± 2.4 (range 0-10) vs 1.0 ± 1.2 (range 0-4)). Differences in mean CA and Evans index were not significant between NPH and non-NPH groups. CSS showed 62.5% sensitivity, 60.87% specificity, 52.63% PPV and 70% NPV for differentiation of NPH and non-NPH groups. A CA of 68 degrees had 48.49% sensitivity, 76.09% specificity, 59.26% PPV 67.31% NPV and DESH score of 4 had 93.75% sensitivity, 41.30% specificity, 52.63% PPV and 90.48% NPV for differentiation between NPH and non-NPH groups. The groups of probable iNPH patients with gait impairment diagnosed by high DESH score or positive functional testing did not overlap and DESH score did not correlate with gait improvement after ELD. DESH score should not be used as a simple diagnostic or prognostic marker of iNPH and we could not confirm the benefit of measurement of callosal angle and cingulate sulcus sign.
- MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- neurologické poruchy chůze etiologie chirurgie MeSH
- neurozobrazování metody MeSH
- normotenzní hydrocefalus diagnostické zobrazování patologie chirurgie MeSH
- prospektivní studie MeSH
- senioři MeSH
- ventrikuloperitoneální zkrat metody MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- kosmetické techniky * MeSH
- lidé MeSH
- mozoly * ošetřování MeSH
- noha (od hlezna dolů) MeSH
- Check Tag
- lidé MeSH
62 s. : il. ; 17 cm
- MeSH
- mozoly MeSH
- nemoci nohy (od hlezna dolů) MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- dermatovenerologie
BACKGROUND AND AIMS: We have recently shown that an Arabidopsis thaliana double mutant of type III phosphatidylinositol-4-kinases (PI4Ks), pi4kβ1β2, constitutively accumulated a high level of salicylic acid (SA). By crossing this pi4kβ1β2 double mutant with mutants impaired in SA synthesis (such as sid2 impaired in isochorismate synthase) or transduction, we demonstrated that the high SA level was responsible for the dwarfism phenotype of the double mutant. Here we aimed to distinguish between the SA-dependent and SA-independent effects triggered by the deficiency in PI4Kβ1 and PI4Kβ2. METHODS: To achieve this we used the sid2pi4kβ1β2 triple mutant. High-throughput analyses of phytohormones were performed on this mutant together with pi4kβ1β2 and sid2 mutants and wild-type plants. Responses to pathogens, namely Hyaloperonospora arabidopsidis, Pseudomonas syringae and Botrytis cinerea, and also to the non-host fungus Blumeria graminis, were also determined. Callose accumulation was monitored in response to flagellin. KEY RESULTS: We show here the prominent role of high SA levels in influencing the concentration of many other tested phytohormones, including abscisic acid and its derivatives, the aspartate-conjugated form of indole-3-acetic acid and some cytokinins such as cis-zeatin. We show that the increased resistance of pi4kβ1β2 plants to the host pathogens H. arabidopsidis, P. syringae pv. tomato DC3000 and Bothrytis cinerea is dependent on accumulation of high SA levels. In contrast, accumulation of callose in pi4kβ1β2 after flagellin treatment was independent of SA. Concerning the response to Blumeria graminis, both callose accumulation and fungal penetration were enhanced in the pi4kβ1β2 double mutant compared to wild-type plants. Both of these processes occurred in an SA-independent manner. CONCLUSIONS: Our data extensively illustrate the influence of SA on other phytohormone levels. The sid2pi4kβ1β2 triple mutant revealed the role of PI4Kβ1/β2 per se, thus showing the importance of these enzymes in plant defence responses.