• Je něco špatně v tomto záznamu ?

Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development

L. Záveská Drábková, D. Honys,

. 2017 ; 12 (11) : e0187331. [pub] 20171113

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016230

Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016230
003      
CZ-PrNML
005      
20180515104010.0
007      
ta
008      
180515s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0187331 $2 doi
035    __
$a (PubMed)29131847
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Záveská Drábková, Lenka $u Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic.
245    10
$a Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development / $c L. Záveská Drábková, D. Honys,
520    9_
$a Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants.
650    _2
$a proteiny huseníčku $x genetika $7 D029681
650    12
$a molekulární evoluce $7 D019143
650    _2
$a rostlinné geny $7 D017343
650    _2
$a glukosyltransferasy $x genetika $7 D005964
650    _2
$a fylogeneze $7 D010802
650    12
$a pyl $7 D011058
650    _2
$a transkripční faktory $x genetika $7 D014157
655    _2
$a časopisecké články $7 D016428
700    1_
$a Honys, David $u Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Praha 6, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 12, č. 11 (2017), s. e0187331
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29131847 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180515104144 $b ABA008
999    __
$a ok $b bmc $g 1299854 $s 1013070
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 12 $c 11 $d e0187331 $e 20171113 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...