SEC6 exocyst subunit contributes to multiple steps of growth and development of Physcomitrella (Physcomitrium patens)

. 2021 May ; 106 (3) : 831-843. [epub] 20210401

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33599020

Spatially directed cell division and expansion is important for plant growth and morphogenesis and relies on cooperation between the cytoskeleton and the secretory pathway. The phylogenetically conserved octameric complex exocyst mediates exocytotic vesicle tethering at the plasma membrane. Unlike other exocyst subunits of land plants, the core exocyst subunit SEC6 exists as a single paralog in Physcomitrium patens and Arabidopsis thaliana genomes. Arabidopsis SEC6 (AtSEC6) loss-of-function (LOF) mutation causes male gametophytic lethality. Our attempts to inactivate the P. patens SEC6 gene, PpSEC6, using targeted gene replacement produced two independent partial LOF ('weak allele') mutants via perturbation of the PpSEC6 gene locus. These mutants exhibited the same pleiotropic developmental defects: protonema with dominant chloronema stage; diminished caulonemal filament elongation rate; and failure in post-initiation gametophore development. Mutant gametophore buds, mostly initiated from chloronema cells, exhibited disordered cell file organization and cross-wall perforations, resulting in arrested development at the eight- to 10-cell stage. Complementation of both sec6 moss mutant lines by both PpSEC6 and AtSEC6 cDNA rescued gametophore development, including sexual organ differentiation. However, regular sporophyte formation and viable spore production were recovered only by the expression of PpSEC6, whereas the AtSEC6 complementants were only rarely fertile, indicating moss-specific SEC6 functions.

Zobrazit více v PubMed

Aoyama, T., Hiwatashi, Y., Shigyo, M., Kofuji, R., Kubo, M., Ito, M. et al. (2012) AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development, 139, 3120-3129.

Ashton, N.W., Grimsley, N.H. & Cove, D.J. (1979) Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta, 144, 427-435.

Assaad, F., Mayer, U., Wanner, G. & Jürgens, G. (1996) The KEULE gene is involved in cytokinesis in Arabidopsis. Molecular and General Genetics, 253, 267-277.

Beronja, S., Laprise, P., Papoulas, O., Pellikka, M., Sisson, J. & Tepass, U. (2005) Essential function of Drosophila Sec6 in epithelial cell-type specific basolateral and apical exocytosis. Journal of Cell Biology, 169, 635-646.

Chong, Y.T., Gidda, S.K., Sanford, C.h., Parkinson, J., Mullen, R.T. & Goring, D.T. (2010) Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytologist, 185, 401-419.

Cole, R.A., Synek, L., Žárský, V. & Fowler, J.E. (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiology, 138, 2005-2018.

Cove, D.J., Bezanilla, M., Harries, P. & Quatrano, R. (2006) Mosses as model systems for the study of metabolism and development. Annual Review of Plant Biology, 57, 497-520.

Cove D. J., Perroud P.-F., Charron A. J., McDaniel S. F., Khandelwal A., Quatrano R. S. (2009) The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies. Cold Spring Harbor Protocols, 2009, pdb.emo115. http://dx.doi.org/10.1101/pdb.emo115.

Croteau, N.J., Furgason, M.L.M., Devos, D. & Munson, M. (2009) Conservation of helical bundle structure between the exocyst subunits. PLoS One, 4, e4443.

Cvrčková, F., Grunt, M., Bezvoda, R., Hála, M., Kulich, I., Rawat, A. et al. (2012) Evolution of the land plant exocyst complexes. Frontiers in Plant Science, 3, 159.

de Sousa, F., Foster, P.G., Donoghue, P.C., Schneider, H. & Cox, C.J. (2019) Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytologist, 222, 565-575.

Doonan, J.H. & Cove, D.J. (1985) Immunofluorescence microscopy of microtubules in intact cell lineages of the moss, Physcomitrella patens. Journal of Cell Science, 75, 131-147.

Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13-15.

Eliáš, M., Drdová, E., Ziak, D., Bavlnka, B., Hála, M., Cvrčková, F. et al. (2003) The exocyst complex in plants. Cell Biology International, 27, 199-201.

Fendrych, M., Synek, L., Pečenková, T., Janková Drdová, E., de Sekereš, J., Rycke, R. et al. (2013) Visualization of the exocyst complex dynamics at the plasma membrane of the Arabidopsis thaliana. Molecular Biology of the Cell, 24, 510-520.

Fendrych, M., Synek, L., Pečenková, T., Toupalová, H., Cole, R., Drdová, E. et al. (2010) The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. The Plant Cell, 22, 3053-3065.

Finka, A., Saidi, Y., Goloubinoff, P., Neuhaus, J.M., Zrÿd, J.P. & Schaefer, D.G. (2008) The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens. Cell Motil Cytoskeleton, 65, 769-784.

Furt, F., Lemoi, K., Tüzel, E. & Vidali, L. (2012) Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells. BMC Plant Biology, 12, 70.

Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO Journal, 18, 1071-1080.

Hackenberg, D., Perroud, P.F., Quatrano, R. & Pandey, S. (2016) Sporophyte formation and life cycle completion in moss requires heterotrimeric G proteins. Plant Physiology, 172, 1154-1166.

Hála, M., Cole, R., Synek, L., Drdová, E., Pečenková, T., Nordheim, A. et al. (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. The Plant Cell, 20, 1330-1345.

Harries, P.A., Pan, A. & Quatrano, R.S. (2005) Actin-related protein2/3 complex component ARPC1 is required for proper cell morphogenesis and polarized cell growth in Physcomitrella patens. The Plant Cell, 17, 2327-2339.

Harrison, C.J., Roeder, A.H.K., Meyerowitz, E.M. & Langdale, J.A. (2009) Local cues and asymmetric cell divisions underpin body plan transitions in the Moss Physcomitrella patens. Current Biology, 19, 461-771.

Heider, M.R., Gu, M., Duffy, C.M., Mirza, A.M., Marcotte, L.L., Walls, A.C. et al. (2016) Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nature Structural & Molecular Biology, 23, 59-66.

Heider, M.R., Munson, M. (2012) Exorcising the exocyst complex. Traffic, 13, 898-907. http://dx.doi.org/10.1111/j.1600-0854.2012.01353.x.

Hsu, S.C., Ting, A.E., Hazuka, C.D., Davanger, S., Kenny, J.W., Kee, Y. et al. (1996) The mammalian brain rsec6/8 complex. Neuron, 17, 1209-1219.

Johansen, W., Ako, A.E., Demko, V., Perroud, P.-F., Rensing, S.A., Mekhlif, A.K. et al. (2016) The DEK1 calpain linker functions in three-dimensional body patterning in Physcomitrella patens. Plant Physiology, 172, 1089-1104.

Kamisugi, Y., Schlink, K., Rensing, S.A., Schween, G., von Stackelberg, M., Cuming, A.C. et al. (2006) The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Research, 34, 6205-6214.

Komsic-Buchmann, K., Stephan, L.M. & Becker, B. (2012) The SEC6 protein is required for contractile vacuole function in Chlamydomonas reinhardtii. Journal of Cell Science, 125, 2885-2895.

Kosetsu, K., Murata, T., Yamada, M., Nishina, M., Boruc, J., Hasebe, M. et al. (2017) Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants. PNAS, 114, E8847-E8854.

Koumandou, V.L., Dacks, J.B., Coulson, M.R. & Field, M.C., (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evolutionary Biology, 7, 29.

Kulich, I., Pečenková, T., Sekereš, J., Smetana, O., Fendrych, M., Foissner, I. et al. (2013) Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic, 14, 1155-1165.

Lamping, E., Tanabe, K., Niimi, M., Uehara, Y., Monk, B.C. & Cannon, R.D. (2005) Characterization of the Saccharomyces cerevisiae sec6-4 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Gene, 361, 57-66.

Lid S.E., Olsen L., Nestestog R., Aukerman M., Brown R.C., Lemmon B. et al. (2005) Mutation in the Arabidopisis thaliana DEK1 calpain gene perturbs endosperm and embryo development while over-expression affects organ development globally. Planta, 221, 339-351. http://dx.doi.org/10.1007/s00425-004-1448-6.

Ligrone, R. (1986) Structure, development and cytochemistry of mucilage secreting hairs in the moss Timmiella-barbuloides (Brid) Moenk. Annals of Botany, 58, 859-868.

Lukowitz, W., Ulrike Mayer, U. & Jürgens, G. (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell, 84, 61-71.

Menand, B., Calder, G. & Dolan, L. (2007) Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens. Journal of Experimental Botany, 58, 1843-1849.

Moody, L.A. (2019) The 2D to 3D growth transition in the moss Physcomitrella patens. Current Opinion in Plant Biology, 47, 88-95.

Moody, L.A., Kelly, S., Rabbinowitsch, E. & Langdale, J.A. (2018) Genetic regulation of the 2D to 3D growth transition in the moss Physcomitrella patens. Current Biology, 28, 473-478.e5.

Munson, M. & Novick, P. (2006) The exocyst defrocked, a framework of rods revealed. Nature Structural & Molecular Biology, 13, 577-581.

Novick, P., Field, C.h. & Schekman, R. (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 21, 205-215.

Ortiz-Ramírez, C., Hernandez-Coronado, M., Thamm, A., Catarino, B., Wang, M., Dolan, L. et al. (2016) A transcriptome atlas of Physcomitrella patens provides insights into the evolution and development of land plants. Mol Plant, 9, 205-220.

Pečenková, T., Hála, M., Kulich, I., Kocourková, D., Drdová, E., Fendrych, M. et al. (2011) The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. Journal of Experimental Botany, 62, 2107-2116.

Pečenková, T., Markovic, V., Sabol, P., Kulich, I. & Žárský, V. (2017) Exocyst and autophagy-related membrane trafficking in plants. Journal of Experimental Botany, 69, 47-57.

Perroud P.-F., Demko V., Johansen W., Wilson R.C., Olsen O.-A., Quatrano R.S. (2014) Defective Kernel 1 (DEK 1) is required for three-dimensional growth in Physcomitrella patens. New Phytologist, 203, 794-804. http://dx.doi.org/10.1111/nph.12844.

Pires, N.D. & Dolan, L. (2012) Morphological evolution in land plants: new designs with old genes. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 367, 508-518.

Prigge M.J. & Bezanilla M. (2010) Evolutionary crossroads in developmental biology: Physcomitrella patens. Development, 137, 3535-3543. http://dx.doi.org/10.1242/dev.049023.

Qi, X., Kaneda, M., Chen, J., Geitmann, A. & Zheng, H. (2011) A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. The Plant Journal, 68, 234-248.

Rawat, A., Brejšková, L., Hála, M., Cvrčková, F. & Žárský, V. (2017) The Physcomitrella patens exocyst subunit EXO703d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytologist, 216, 438-454.

Rensing S.A., Lang D., Zimmer A.D., Terry A., Salamov A., Shapiro H. et al. (2008) The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64-69. http://dx.doi.org/10.1126/science.1150646.

Riquelme, M., Bredeweg, E.L., Callejas-Negrete, O., Roberson, R.W., Ludwig, S., Beltrán-Aguilar, A. et al. (2014) The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Molecular Biology of the Cell, 25, 1312-1326.

Rybak, K., Steiner, A., Synek, L., Klaeger, S., Kulich, I., Facher, E. et al. (2014) Plant Cytokinesis Is Orchestrated by the Sequential Action of the TRAPPII and Exocyst Tethering Complexes. Developmental Cell, 29, 607-620.

Sakata, Y., Komatsu, K., Taji, T. & Tanaka, S. (2009) Role of PP2C-mediated ABA signaling in the moss Physcomitrella patens. Plant Signal Behav, 4, 887-889.

Schaefer, D.G. & Zrÿd, J.P. (1997) Efficient gene targeting in the moss Physcomitrella patens. The Plant Journal, 11, 1195-1206.

Schnepf, E. & Reinhard, C. (1997) Brachycytes in Funaria protonemate: induction by abscisic acid and fine structure. Journal of Plant Physiology, 151, 166-175.

Schween, G., Gorr, G., Hohe, A. & Reski, R. (2003) Unique tissue-specific cell cycle in Physcomitrella. Plant Biol, 5, 50-58.

Sekereš, J., Pejchar, P., Šantrůček, J., Vukašinović, N., Žárský, V. & Potocký, M. (2017) Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiology, 173, 1659-1675.

Songer, J.A. & Munson, M. (2009) Sec6p anchors the assembled exocyst complex at sites of secretion. Molecular Biology of the Cell, 20, 973-982.

Spinner, L., Pastuglia, M., Belcram, K., Pegoraro, M., Goussot, M., Bouchez, D. et al. (2010) The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants. Development, 137, 2733-2742.

Steiner, A., Müller, L., Rybak, K., Vodermaier, V., Facher, E., Thellmann, M. et al. (2016) The membrane-associated Sec1/Munc18 KEULE is required for phragmoplast microtubule reorganization during cytokinesis in Arabidopsis. Molecular Plant, 9, 528-540.

Synek, L., Schlager, N., Eliáš, M., Quentin, M., Hauser, M. & Žárský, V. (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. The Plant Journal, 48, 54-72.

Tang, H., de Keijzer, J., Overdijk, E., Sweep, E., Steentjes, M., Vermeer, J.E. et al. (2019) Exocyst subunit Sec6 is positioned by microtubule overlaps in the moss phragmoplast prior to cell plate membrane arrival. Journal of Cell Science, 132, jcs222430.

Ter Bush, D.R., Maurice, T., Roth, D. & Novick, P. (1996) The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO Journal, 15, 6483-6494.

TerBush, D.R. & Novick, P. (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. Journal of Cell Biology, 130, 299-312.

van Gisbergen, P.A.C., Wu, S.-Z., Chang, M., Pattavina, K.A., Bartlett, M.E. & Bezanilla, M. (2018) An ancient Sec10-formin fusion provides insights into actin-mediated regulation of exocytosis. Journal of Cell Biology, 217, 945-957.

Wendeler, E., Zobell, O., Chrost, B. & Reiss, B. (2015) Recombination product suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens. The Plant J., 81, 548-558.

Wu, J., Tan, X., Wu, C.H., Cao, K., Li, Y. & Bao, Y. (2013) Regulation of cytokinesis by exocyst subunit SEC6 and KEULE in Arabidopsis thaliana. Mol Plant, 6, 1863-1876.

Žárský, V., Cvrčková, F., Potocký, M. & Hála, M. (2009) Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytologist, 183, 255-272.

Žárský, V., Kulich, I., Fendrych, M. & Pečenková, T. (2013) Exocyst complexes multiple functions in plant cells secretory pathways. Current Opinion in Plant Biology, 16, 726-733.

Žárský, V., Sekereš, J., Kubátová, Z., Pečenková, T. & Cvrčková, F. (2020) Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Botany, 71, 49-62.

Zhang, L., Zhang, H., Liu, P., Hao, H., Jin, J.B. & Lin, J. (2011) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One, 6, e26129.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth

. 2025 Jan ; 48 (1) : 451-469. [epub] 20240913

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...