polarity
Dotaz
Zobrazit nápovědu
Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis. Six radioactive sources were investigated, two of which are surface (Wettinquelle and Radonka) and four deep from the Svornost mine (Agricola, Behounek, C1, and Curie). A total of 15 core lipids and 82 intact polar lipids were identified from the membranes of microorganisms in six radioactive springs. Using shotgun lipidomics, typical Archaea lipids were identified in spring water, namely dialkyl glycerol tetraethers, archaeol, hydroxyarchaeol and dihydroxyarchaeol. Diverse groups of polar heads were formed in archaeal IPLs, whose polar heads are formed mainly by hexose, deoxyhexose, and phosphoglycerol. The analysis was performed using shotgun lipidomics and the structure of all molecular species was confirmed by tandem mass spectrometry. After acid hydrolysis, a mixture of polar compounds was obtained from the polar head. Further analysis by GC-MS confirmed that the carbohydrates were glucose and rhamnose. Analysis by HPLC-MS of diastereoisomers of 2-(polyhydroxyalkyl)-3-(O-tolylthiocarbamoyl)thiazolidine-4(R)-carboxylates revealed that both L-rhamnose and D-glucose are present in spring samples only in varying amounts. The glycoside composition depends on the type of spring, that is, Wettinquelle and Radonka springs are basically shallow groundwater, while the samples from the Svornost mine are deep groundwater and do not contain glycosides with rhamnose. This method enables quick screening for characteristic Archaea lipids, allowing decisions on whether to pursue further analyses, such as metagenomic analysis, to directly confirm the presence of Archaea.
Rosette-forming glioneuronal tumors (RGNTs) with FGFR1 tyrosine kinase domain internal tandem duplication (FGFR1 ITD) is exceedingly rare, with only a few cases reported in the literature. Hereby we present a case of a tumor with RGNT morphology occurring in area of septum pellucidum of 43-year-old male. The tumor showed FGFR1 ITD, no PIK3CA, PIK3R1 or NF1 alterations and inconclusive methylation profile with match for class of "low-grade glial/glioneuronal/neuroepithelial tumors". No areas characteristic of dysembryoplastic neuroepithelial tumor were identified. A brief review of literature on discrepancies between morphological diagnosis of RGNT and molecular profile of the entity is provided.
- MeSH
- dospělí MeSH
- lidé MeSH
- nádory mozku * patologie genetika MeSH
- neuroepitelové nádory * patologie genetika MeSH
- receptor fibroblastových růstových faktorů, typ 1 * genetika MeSH
- tandemové repetitivní sekvence MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus genetika MeSH
- inhibitory matrixových metaloproteinas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- metaloproteasy metabolismus genetika MeSH
- moláry embryologie růst a vývoj metabolismus enzymologie MeSH
- morfogeneze MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odontogeneze * MeSH
- proliferace buněk * MeSH
- vývojová regulace genové exprese MeSH
- zubní zárodek embryologie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A novel Gram-stain-negative, strictly aerobic, rod-shaped, light-yellow-pigmented, and chemo-organoheterotrophic bacterium, designated DF-77T, was isolated from dense mats of filamentous algae collected in March 2004 at Okinawa in Japan. The microorganism grew at 0-2.0% NaCl concentrations (w/v), pH 6.0-9.0, and 20-30 °C. The 16S rRNA gene sequence-based phylogenetic tree demonstrated that the strain DF-77T is a novel member of the family Flavobacteriaceae and was greatly related to Flagellimonas nanhaiensis SM1704T with sequence similarity of 95.5%. The main fatty acids were iso-C15:1 G, iso-C15:0, and iso-C17:0 3-OH, and the only isoprenoid quinone was menaquinone-6. The dominant polar lipids were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phosphoaminolipid, and four unidentified lipids. The genome size of strain DF-77T was 3.60 Mbp with a DNA G + C content of 47.5%. The average nucleotide identity (ANI) value between the genomes of strain DF-77T and its closely related species was 69.8-70.7%. The digital DNA - DNA hybridization (dDDH) value of strain DF-77T with the strain of F. nanhaiensis SM1704T was 16.8%. The genome of the strain DF-77T revealed that it encoded several genes involved in bio-macromolecule degradation, indicating a high potential for producing industrially useful enzymes. Consequently, the strain is described as a new species in the genus Flagellimonas, for which the name Flagellimonas algarum sp. nov., is proposed with the type strain DF-77T (= KCTC 72791T = NBRC 114251T).
- MeSH
- DNA bakterií genetika chemie MeSH
- Flavobacteriaceae * klasifikace izolace a purifikace genetika MeSH
- fosfolipidy analýza MeSH
- fylogeneze MeSH
- genom bakteriální MeSH
- hybridizace nukleových kyselin MeSH
- mastné kyseliny analýza MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- vitamin K 2 analýza analogy a deriváty MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Japonsko MeSH
Atherosclerosis is a chronic inflammatory disease of the blood vessels caused by elevated levels of lipoproteins. The hyperlipoproteinemia triggers a series of cellular changes, particularly the activation of the macrophages, which play a crucial role in the development and progression of atherosclerosis. The presence of free cholesterol (FC) in lipoproteins may contribute to macrophage stimulation. However, the mechanisms linking the accumulation of FC in macrophages to their pro-inflammatory activation remain poorly understood. Our research found a positive correlation between the number of pro-inflammatory macrophages (CD14 + CD16 + CD36high) in visceral adipose tissue and the levels of LDL-C and cholesterol remnant particles in 56 healthy people. In contrast, the proportion of anti-inflammatory, alternatively activated macrophages (CD14 + CD16-CD163+) correlated negatively with HDL-C. Additionally, our in vitro study demonstrated that macrophages accumulating FC promoted a pro-inflammatory response, activating the TNF-α and chemokine CCL3 genes. Furthermore, the accumulation of FC in macrophages alters the surface receptors on macrophages (CD206 and CD16) and increases cellular granularity. Notably, the CD36 surface receptor and the ACAT and CD36 genes did not show a response. These results suggest a link between excessive FC accumulation and systemic inflammation to underlie the development of atherosclerosis.
- MeSH
- aktivace makrofágů MeSH
- antigeny CD36 metabolismus MeSH
- ateroskleróza metabolismus MeSH
- CD antigeny metabolismus MeSH
- cholesterol * metabolismus MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy * metabolismus imunologie účinky léků MeSH
- nitrobřišní tuk metabolismus MeSH
- TNF-alfa metabolismus genetika MeSH
- zánět * metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The study focuses on the effects of fluvastatin on immunomarkers of the M1 and M2 macrophages and its direct role in macrophage (M0) polarization. Moreover, it investigates the dependency of immunomodulatory properties of fluvastatin on the mevalonate pathway. Macrophages (M0, M1, M2), differentiated from human blood monocytes, were treated with fluvastatin. Mevalonate and geranylgeranyl pyrophosphate intermediates were introduced to assess the mevalonate pathway dependence. The immunomarkers were evaluated with qPCR, ELISA, Griess assay, and flow cytometry. Fluvastatin significantly reduces the pro-inflammatory gene expression (NFκB, IL-1β, IL-6, iNOS) in M1 while enhancing the anti-inflammatory markers (Arg-1, TGFβ) in M2 macrophages. The production of the TNFα, IL-1β, and IL-6 cytokines is reduced in M1, and IL-10 production increased in M2 macrophages. Fluvastatin decreases the iNOS activity in M1 macrophages. The intermediates reverse the fluvastatin's effects on anti-inflammatory gene expression by M2 macrophages, cytokine production (by M1 and M2 macrophages), and iNOS activity (by M1 macrophages). Their impact on surface marker expression was somewhat limited. These findings demonstrate that fluvastatin exerts anti-inflammatory effects on polarized macrophages without affecting polarization per se and also highlight the dependency on the mevalonate pathway. This study deepens the understanding of statins' immunomodulatory mechanisms, suggesting potential applications in treating inflammatory diseases.
- MeSH
- antiflogistika * farmakologie MeSH
- cytokiny metabolismus MeSH
- fluvastatin * farmakologie MeSH
- kyselina mevalonová * metabolismus MeSH
- lidé MeSH
- makrofágy * účinky léků metabolismus imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In the presented study, the cells of the glacial alga Ancylonema alaskanum collected in the Austrian Alps were analyzed. Algae were imaged both in their natural environment and in laboratory conditions using transmitted light and fluorescence microscopy. Using appropriate fluorochromes, the cell wall and cell organelles were studied. Oval nuclei located in the middle of the cell next to the chloroplasts and active mitochondria as well as lipid thylakoids of chloroplasts were imaged. Scanning electron microscopy showed that the surface of the algal cell wall was not significantly differentiated, and atomic force microscope imaging recorded little roughness. The SEM EDS analysis revealed that carbon, nitrogen, oxygen, and magnesium were the main components of the cells. It is worth emphasizing that the analyzed living algal cells were obtained directly from the glacier surface and demonstrated normal respiratory processes i.e. undisturbed physiological functions. Additionally, the mineral material accompanying the cells in their natural environment - fragments of the rock were imaged by Differential Interference Contrast microscopy and analyzed by Fourier Transform Infrared Spectroscopy. The study provides new data on the morphology and physicochemical characteristics of A. alaskanum, contributing to a more comprehensive characterization of their place in this harsh ecosystem.
- MeSH
- ledový příkrov * MeSH
- mikroskopie elektronová rastrovací MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rakousko MeSH
... reakce v organické chemii 42 -- 4.3 Způsoby štěpení vazeb 42 -- 4.4 Typy reakčních činidel 43 -- 4.5 Polarita ...
Učební texty Univerzity Karlovy
6., upravené vydání 252 stran : ilustrace ; 30 cm
Středoškolská učebnice, která se zaměřuje na organickou chemii a biochemii a připravuje k přijímacím zkouškám na vysokou školu.
- Konspekt
- Chemie. Mineralogické vědy
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- chemie, klinická chemie
- NLK Publikační typ
- učebnice středních škol
Many photosensitive substances suitable for photodynamic therapy (PDT) have limited applications due to their insufficient solubility in polar solvents. Our research overcomes this challenge by means of nanotechnology in order to transform hydrophobic compounds into stable aqueous solutions, enabling them to use their full potential and unique properties in cancer therapy. In this study, the novel nano-composite cGQDs-PEG-curcumin was developed to overcome the insolubility of curcumin in water and its extraordinary efficacy in PDT was evaluated. Complex characterization was performed using high-resolution transmission electron microscopy (HR-TEM), FTIR, and UV-Vis spectroscopy. Further analysis involved fluorescence lifetime imaging (FLIM), and its cellular localization was mapped with confocal microscopy. In order to evaluate PDT effectiveness, cells treated with cGQDs-PEG-curcumin were irradiated with 5 J/cm2 of 414 nm light. After irradiation, cell viability assay, scanning electron microscopy (SEM), reactive oxygen species (ROS) detection, comet assay, and γH2AX-based DNA double-strand breaks (DSBs) detection were assessed and revealed a remarkable ability of the nano-composite to induce DNA damage after irradiation without ROS production. Our findings highlight the potential of cGQDs-PEG-curcumin as a cutting-edge PDT agent, capable of disrupting cell membrane and nucleolar integrity and impairing ribosomal synthesis, which is crucial for proliferating tumour cells.
- MeSH
- buněčné jadérko * účinky léků metabolismus MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- fotochemoterapie * metody MeSH
- fotosenzibilizující látky * farmakologie MeSH
- grafit * chemie farmakologie MeSH
- kurkumin * farmakologie chemie MeSH
- kvantové tečky * chemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory * farmakoterapie MeSH
- polyethylenglykoly * chemie farmakologie MeSH
- poškození DNA * účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH