Plant extracellular vesicles and their potential in human health research, the practical approach

. 2022 Jul 29 ; 71 (3) : 327-339.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35904344

Extracellular vesicles are small membrane particles (30-1000 nm) released by Bacteria, Eukaryotes and Archaea. They have been shown to play an important role in intracellular and intercellular communication, within and between kingdoms via transport of bioactive molecules. Thus, they can be involved in altering gene expression and regulation of physiological and pathological processes of the recipient. Their unique properties make extracellular vesicles a perfect candidate vector for targeted drug delivery or a biomarker. For a long time, animal and mainly mammal extracellular vesicles have been used in research. But for plants, there had been speculations about the existence of nanovesicles due to the presence of a cell wall. Today, awareness of plant extracellular vesicles is on the rise and their research has proved they have various functions, such as protein secretion, transport of bioactive molecules or defense against pathogens. Further potential of plant extracellular vesicles is stressed in this review.

Zobrazit více v PubMed

Rutter B, Rutter K, Innes R. Isolation and quantification of plant extracellular vesicles. Bio-Protocol. 2017;7:1–13. doi: 10.21769/BioProtoc.2533. PubMed DOI PMC

Berger E, Colosetti P, Jalabert A, Meugnier E, Wiklander OPB, Johuet J, Errazurig-Cerda E, Chanon S, Gupta D, Rautureau G, Geloen A, El-Andaloussi S, Panthu B, Rieusset J, Rome S. Use of nanovesicles from orange juice to reverse diet-induced gut modifications in diet-induced obese mice. Mol Ther Methods Clin Dev. 2020;18:880–892. doi: 10.1016/j.omtm.2020.08.009. PubMed DOI PMC

Kırbaş OK, Bozkurt BT, Asutay AB, Mat B, Ozdemir B, Öztürkoğlu D, Ölmez H, Zeynep I, Fikrettin S, Parkize Neslihan T. Optimized isolation of extracellular vesicles from various organic sources using aqueous two-phase system. Sci Rep. 2019;9:1–11. doi: 10.1038/s41598-019-55477-0. PubMed DOI PMC

Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. Protoplasma. 2020;257:3–12. doi: 10.1007/s00709-019-01435-6. PubMed DOI

Suharta S, Barlian A, Hidajah AC, Notobroto HB, Ana ID, Indariani S, Wungu TDK, Wijaya CH. Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J Food Sci. 2021;86:2838–2850. doi: 10.1111/1750-3841.15787. PubMed DOI

Vaněk O, Bezouška K. Analytical ultracentrifuge and its use in biochemical laboratory. Chem Listy. 2010;104:1155–1162.

Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci. 2020;21:1–19. doi: 10.3390/ijms21186466. PubMed DOI PMC

Osteikoetxea X, Sódar B, Németh A, Szabó-Taylor A, Pálóczi K, Vukman KV, Tamási V, Balogh A, Kittel A, Pállinger E, Buzás EI. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015;13:9775–9782. doi: 10.1039/C5OB01451D. PubMed DOI

Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, Németh A, Sperlágh B, Baranyai T, Giricz Z, Wiener Z, Turiák L, Drahos L, Pállinger E, Vékey K, Ferdinandy P, Falus A, Buzás EI. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:1–12. doi: 10.1038/srep24316. PubMed DOI PMC

Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, Soria CE, Oquin S, Bonebreak CM, Saracoglu E, Skog J, Kuo WP. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394:1253–1262. doi: 10.1515/hsz-2013-0141. PubMed DOI PMC

Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–188. doi: 10.1016/j.tcb.2016.11.003. PubMed DOI PMC

Cui Y, Gao J, He Y, Jiang L. Plant extracellular vesicles. Protoplasma. 2020;257:3–12. doi: 10.1007/s00709-019-01435-6. PubMed DOI

Zhuang X, Bin Deng Z, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015;4:1–19. doi: 10.3402/jev.v4.28713. PubMed DOI PMC

Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12:1927–1943. doi: 10.2217/nnm-2017-0196. PubMed DOI PMC

Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, Wang Q, Xiang X, Guo H, Zhang L, Dryden G, Yan J, Miller D, Zhang HG. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22:522–534. doi: 10.1038/mt.2013.190. PubMed DOI PMC

Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58:1561–1573. doi: 10.1002/mnfr.201300729. PubMed DOI PMC

Théry C, Clayton A, Amigorena S, Raposo G. Isolation and characterization of exosomes from cell culture supernatants. Curr Protoc Cell Biol. 2006;30:3.22:3.22.1–3.22.29. doi: 10.1002/0471143030.cb0322s30. PubMed DOI

Richter M, Fuhrmann K, Fuhrmann G. Evaluation of the storage stability of extracellular vesicles. J Vis Exp. 2019;2019:1–9. doi: 10.3791/59584. PubMed DOI

Bosch S, De Beaurepaire L, Allard M, Mosser M, Heichette C, Chrétien D, Jegou D, Bach JM. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6:1–11. doi: 10.1038/srep36162. PubMed DOI PMC

Kocak P, Kala EY, Gunes M, Unsal N, Yılmaz H, Metin B, Sahin F. Edible plant-derived exosomes and their therapeutic applications. J Biomed Imag Bioeng. 2020;4:130–135.

Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 2017;173:728–741. doi: 10.1104/pp.16.01253. PubMed DOI PMC

Wang X, Yan X, Zhang L, Cai J, Zhou Y, Liu H, Hu Y, Chen W, Xu S, Liu P, Chen T, Zhang J, Cao Y, Yu Z, Han S. Identification and peptidomic profiling of exosomes in preterm human milk: insights into necrotizing enterocolitis prevention. Mol Nutr Food Res. 2019;63:1–37. doi: 10.1002/mnfr.201801247. PubMed DOI

Sundaram K, Miller DP, Kumar A, Teng Y, Sayed M, Mu J, Lei C, Sriwastva MK, Zhang L, Yan J, Merchant ML, He L, Fang Y, Zhang S, Zhang X, Park JW, Lamont RJ, Zhang HG. Plant-derived exosomal nanoparticles inhibit pathogenicity of Porphyromonas gingivalis. iScience. 2019;21:308–327. doi: 10.1016/j.isci.2019.10.032. PubMed DOI PMC

Stremersch S, De Smedt SC, Raemdonck K. Therapeutic and diagnostic applications of extracellular vesicles. J Control Release. 2016;244:167–183. doi: 10.1016/j.jconrel.2016.07.054. PubMed DOI

Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma. 2016;253:31–43. doi: 10.1007/s00709-015-0887-1. PubMed DOI

Di Gioia S, Hossain M, Conese M. Biological properties and therapeutic effects of plant-derived nanovesicles. Open Med. 2020;15:1096–1122. doi: 10.1515/med-2020-0160. PubMed DOI PMC

Deng Z, Rong Y, Teng Y, Mu J, Zhuang X, Tseng M, Samykutty A, Zhang L, Yan J, Miller D, Suttles J, Zhang HG. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase. Mol Ther. 2017;25:1641–1654. doi: 10.1016/j.ymthe.2017.01.025. PubMed DOI PMC

Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang Y, Ym Hua CL, Ding SW, Guo HS. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants. 2016;2:1–6. doi: 10.1038/nplants.2016.153. PubMed DOI

Zhuang X, Teng Y, Samykutty A, Mu J, Deng Z, Zhang L, Cao P, Rong Y, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression. Mol Ther. 2016;24:96–105. doi: 10.1038/mt.2015.188. PubMed DOI PMC

Yepes-Molina L, Martínez-Ballesta MC, Carvajal M. Plant plasma membrane vesicles interaction with keratinocytes reveals their potential as carriers. J Adv Res. 2020;23:101–111. doi: 10.1016/j.jare.2020.02.004. PubMed DOI PMC

Şahin F, Koçak P, Güneş MY, Özkan İ, Yıldırım E, Kala EY. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188:381–394. doi: 10.1007/s12010-018-2913-1. PubMed DOI

Perut F, Roncuzzi L, Avnet S, Massa A, Zini N, Sabbadini S, Giampieri F, Mezzetti B, Baldini N. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules. 2021;11:1–14. doi: 10.3390/biom11010087. PubMed DOI PMC

De Robertis M, Sarra A, D’oria V, Mura F, Bordi F, Postorino P, Fratantonio D. Blueberry-derived exosome-like nanoparticles counters the response to TNF-α-induced change on gene expression in ea.Hy926 cells. Biomolecules. 2020;10:1–17. doi: 10.3390/biom10050742. PubMed DOI PMC

Raimondo S, Naselli F, Fontana S, Monteleone F, Dico AL, Saieva L, Zita G, Flugy A, Manno M, Di Bella MA, Leo GD, Alessandro R. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget. 2015;6:1–14. doi: 10.18632/oncotarget.4004. PubMed DOI PMC

Woith E, Guerriero G, Hausman J, Renaut J, Leclercq C, Weise C, Legay S, Weng A, Melzig M. Plant extracellular vesicles and nanovesicles: Focus on secondary metabolites, proteins and lipids with perspectives on their potential and sources. Int J Mol Sci. 2021;22:1–20. doi: 10.3390/ijms22073719. PubMed DOI PMC

Nishio M, Teranishi Y, Morioka K, Yanagida A, Shoji A. Real-time assay for exosome membrane fusion with an artificial lipid membrane based on enhancement of gramicidin A channel conductance. Biosens Bioelectron. 2020;150:111918. doi: 10.1016/j.bios.2019.111918. PubMed DOI

Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 2019;18:1–14. doi: 10.1186/s12943-019-0991-5. PubMed DOI PMC

Liu NJ, Bao JJ, Wang LJ, Chen XY. Arabidopsis leaf extracellular vesicles in wound-induced jasmonate accumulation. Plant Signal Behav. 2020;15:1–5. doi: 10.1080/15592324.2020.1833142. PubMed DOI PMC

Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers. 2016;4:1–9. doi: 10.1080/21688370.2015.1134415. PubMed DOI PMC

Woith E, Fuhrmann G, Melzig MF. Extracellular vesicles-connecting kingdoms. Int J Mol Sci. 2019;20:1–26. doi: 10.3390/ijms20225695. PubMed DOI PMC

Teng Y, Ren Y, Sayed M, Park JW, Egilmez NK, Zhang HG. Plant-derived exosomal microRnas shape the gut microbiota. Cell Host Microbe. 2018;24:637–652. doi: 10.1016/j.chom.2018.10.001. PubMed DOI PMC

Synek L, Pleskot R, Sekereš J, Serrano N, Vukašinovic N, Ortmannová J, Klejchová M, Pejchar P, Batystová K, Gutkowská M, Janková-Drdová E, Markovic V, Pečenková T, Šantrůček J, Žárský V, Potocký M. Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc Natl Acad Sci U S A. 2021;118:e2105287118. doi: 10.1073/pnas.2105287118. PubMed DOI PMC

Wang X, Devaiah SP, Zhang W, Welti R. Signaling functions of phosphatidic acid. Prog Lipid Res. 2006;45:250–278. doi: 10.1016/j.plipres.2006.01.005. PubMed DOI

Stremmel W, Merle U, Zahn A, Autschbach F, Hinz U, Ehehalt R. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut. 2005;54:966–971. doi: 10.1136/gut.2004.052316. PubMed DOI PMC

Cho JY, Chi SG, Chun HS. Oral administration of docosahexaenoic acid attenuates colitis induced by dextran sulfate sodium in mice. Mol Nutr Food Res. 2011;55:239–246. doi: 10.1002/mnfr.201000070. PubMed DOI

Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I. Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int J Mol Sci. 2019;20:1–13. doi: 10.3390/ijms20153803. PubMed DOI PMC

Potestà M, Roglia V, Fanelli M, Pietrobono E, Gismondi A, Vumbaca S, Tsangueu RGN, Canini A, Colizzi A, Grelli S, Minutolo A, Montesano C. Effect of microvesicles from Moringa oleifera containing miRNA on proliferation and apoptosis in tumor cell lines. Cell Death Discov. 2020;6:1–17. doi: 10.1038/s41420-020-0271-6. PubMed DOI PMC

Pinedo Marcela, de la Canal L, Lousa M. A call for rigor and standardization in plant extracellular vesicle research. J Extracell Vesicles. 2021;10:1–8. doi: 10.1002/jev2.12048. PubMed DOI PMC

Baldrich P, Rutter BD, Karimi HZ, Podicheti R, Meyers BC, Innes RW. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “Tiny” RNAs. Plant Cell. 2019;31:315–324. doi: 10.1105/tpc.18.00872. PubMed DOI PMC

Yang M, Liu X, Luo Q, Xu L, Chen F. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J Nanobiotechnology. 2020;18:1–12. doi: 10.1186/s12951-020-00656-9. PubMed DOI PMC

Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Xiang X, Wang B, Yan J, Miller D, Zhang HG. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1–11. doi: 10.1038/ncomms3358. PubMed DOI PMC

He B, Cai Q, Qiao L, Huang CY, Wang S, Miao W, Ha T, Wang Y, Jin H. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat Plants. 2021;7:342–352. doi: 10.1038/s41477-021-00863-8. PubMed DOI PMC

Dou W, Zhang J, Sun A, Zhang E, Ding L, Mukherjee S, Wei X, Chou G, Wang ZT, Mani S. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling. Br J Nutr. 2013;110:599–608. doi: 10.1017/S0007114512005594. PubMed DOI PMC

Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan D, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. doi: 10.1016/j.biomaterials.2016.06.018. PubMed DOI PMC

Inês Amaro M, Rocha J, Vila-Real H, Figueira ME, Filipe HM, Sepodes B, Ribeiro MH. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res Int. 2009;42:1010–1017. doi: 10.1016/j.foodres.2009.04.016. DOI

Woith E, Melzig MF. Extracellular vesicles from fresh and dried plants-Simultaneous purification and visualization using gel electrophoresis. Int J Mol Sci. 2019;20:1–8. doi: 10.3390/ijms20020357. PubMed DOI PMC

Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21:1345–1357. doi: 10.1038/mt.2013.64. PubMed DOI PMC

Xiao J, Feng S, Wang X, Long K, Luo Y, Wang Y, Ma J, Tang Q, Jin L, Li X, Li M. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables. PeerJ. 2018;2018:e5186. doi: 10.7717/peerj.5186. PubMed DOI PMC

Chen X, Zhou Y, Yu J. Exosome-like Nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol Pharm. 2019;16:2690–2699. doi: 10.1021/acs.molpharmaceut.9b00246. PubMed DOI

Song H, Canup BSB, Ngo VL, Denning TL, Garg P, Laroui H. Internalization of garlic-derived nanovesicles on liver cells is triggered by interaction with CD98. ACS Omega. 2020;5:23118–23128. doi: 10.1021/acsomega.0c02893. PubMed DOI PMC

Stanly C, Alfieri M, Ambrosone A, Leone A, Fiume I, Pocsfalvi G. Grapefruit-derived micro and nanovesicles show distinct metabolome profiles and anticancer activities in the A375 human melanoma cell line. Cells. 2020;9:2722–2737. doi: 10.3390/cells9122722. PubMed DOI PMC

Cao M, Yan H, Han X, Weng L, Wei Q, Lu W, Wei Q, Ye J, Cai X, Hu Cm Yin X, Cao P. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J Immunother Cancer. 2019;7:1–18. doi: 10.1186/s40425-019-0817-4. PubMed DOI PMC

Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, Han MK, Xiao B, Xu C, Srinivasan S, Merlin D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–340. doi: 10.1016/j.biomaterials.2016.06.018. PubMed DOI PMC

Yuasa K, Toyooka K, Fukuda H, Matsuoka K. Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum. Plant J. 2005;41:81–94. doi: 10.1111/j.1365-313X.2004.02279.x. PubMed DOI

Kim K, Yoo HJ, Jung JH, Lee R, Hyun JK, Park JH, Na D, Yeon JH. Cytotoxic effects of plant sap-derived extracellular vesicles on various tumor cell types. J Funct Biomater. 2020;11:1–17. doi: 10.3390/jfb11020022. PubMed DOI PMC

Kim K, Jung JH, Yoo HJ, Hyun JK, Park JH, Na D, Yeon JH. Anti-metastatic effects of plant sap-derived extracellular vesicles in a 3D microfluidic cancer metastasis model. J Funct Biomater. 2020;11:49–62. doi: 10.3390/jfb11030049. PubMed DOI PMC

Timms K. Investigating the effect of plant-derived extracellular vesicles on human placental function. The University of Manchester; 2018. pp. 1–289.

Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29:13–31. doi: 10.1016/j.ymthe.2020.11.030. PubMed DOI PMC

Wang Q, Ren Y, Mu J, Egilmez N, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75:2520–2529. doi: 10.1158/0008-5472.CAN-14-3095. PubMed DOI PMC

Teng Y, Mu J, Hu X, Samykutty A, Zhuang X, Deng Z, Zhang L, Cao P, Yan J, Miller D, Zhang HG. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages. Oncotarget. 2016;7:25683–25697. doi: 10.18632/oncotarget.8361. PubMed DOI PMC

Li Z, Wang H, Yin H, Bennett C, Zhang H-G, Guo P. Arrowtail RNA for ligand display on ginger exosome-like nanovesicles to systemic deliver siRNA for cancer suppression. Sci Rep. 2018;8:1–11. doi: 10.1038/s41598-018-32953-7. PubMed DOI PMC

Zhang M, Xiao B, Wang H, Han MK, Zhang Zm Viennois E, Xu C, Merlin D. Edible ginger-derived nano-lipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol Ther. 2016;24:1783–1796. doi: 10.1038/mt.2016.159. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...