Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35122385
PubMed Central
PMC8995067
DOI
10.1111/mpp.13187
Knihovny.cz E-resources
- Keywords
- extracellular proteins, multivesicular bodies, pathogenesis-related 1, plant immunity, vesicular trafficking,
- MeSH
- Arabidopsis * metabolism MeSH
- Endoplasmic Reticulum metabolism MeSH
- Stress, Physiological MeSH
- Plant Immunity genetics MeSH
- Arabidopsis Proteins * metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Nicotiana genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arabidopsis Proteins * MeSH
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Institute of Experimental Botany of the Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Agrios, G.N. (2005) How plants defend themselves against pathogens. In: Agrios, G.N. (Ed.), Plant Pathology. Academic Press, 207–248.
Antoniw, J.F. & Pierpoint, W.S. (1978) Purification of a tobacco leaf protein associated with resistance to virus infection. Biochemical Society Transactions, 6, 248–250. PubMed
Betsuyaku, S. , Katou, S. , Takebayashi, Y. , Sakakibara, H. , Nomura, N. & Fukuda, H. (2018) Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector‐triggered immunity in Arabidopsis thaliana . Plant and Cell Physiology, 59, 8–16. PubMed PMC
Boudart, G. , Jamet, E. , Rossignol, M. , Lafitte, C. , Borderies, G. , Jauneau, A. et al. (2005) Cell wall proteins in apoplastic fluids of Arabidopsis thaliana rosettes: identification by mass spectrometry and bioinformatics. Proteomics, 5, 212–221. PubMed
Bourdais, G. , McLachlan, D.H. , Rickett, L.M. , Zhou, J. , Siwoszek, A. , Häweker, H. et al. (2019) The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic, 20, 168–180. PubMed
Bowling, S.A. , Guo, A. , Cao, H. , Gordon, A.S. , Klessig, D.F. & Dong, X. (1994) A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. The Plant Cell, 6, 1845–1857. PubMed PMC
Breen, S. , Williams, S.J. , Outram, M. , Kobe, B. & Solomon, P.S. (2017) Emerging insights into the functions of pathogenesis‐related protein 1. Trends in Plant Science, 22, 871–879. PubMed
Breen, S. , Williams, S.J. , Winterberg, B. , Kobe, B. & Solomon, P.S. (2016) Wheat PR‐1 proteins are targeted by necrotrophic pathogen effector proteins. The Plant Journal, 88, 13–25. PubMed
Camacho Henriquez, A. & Sänger, H.L. (1982) Analysis of acid‐extractable tomato leaf proteins after infection with a viroid, two viruses and a fungus and partial purification of the “pathogenesis‐related” protein p14. Archives of Virology, 74, 181–196. PubMed
Carella, P. , Merl‐Pham, J. , Wilson, D.C. , Dey, S. , Hauck, S.M. , Vlot, A.C. et al. (2016) Comparative proteomics analysis of phloem exudates collected during the induction of systemic acquired resistance. Plant Physiology, 171, 1495–1510. PubMed PMC
Cerovska, N. , Hoffmeisterova, H. , Moravec, T. , Plchova, H. , Folwarczna, J. , Synkova, H. et al. (2012) Transient expression of Human papillomavirus type 16 L2 epitope fused to N‐ and C‐terminus of coat protein of Potato virus X in plants. Journal of Biosciences, 37, 125–133. PubMed
Chen, Y.L. , Lee, C.Y. , Cheng, K.T. , Chang, W.H. , Huang, R.N. , Nam, H.G. et al. (2014) Quantitative peptidomics study reveals that a wound‐induced peptide from PR‐1 regulates immune signaling in tomato. The Plant Cell, 26, 4135–4148. PubMed PMC
Chien, P.S. , Nam, H.G. & Chen, Y.R. (2015) A salt‐regulated peptide derived from the CAP superfamily protein negatively regulates salt‐stress tolerance in Arabidopsis . Journal of Experimental Botany, 66, 5301–5313. PubMed PMC
Chung, K.P. , Zeng, Y. , Li, Y. , Ji, C. , Xia, Y. & Jiang, L. (2018) Signal motif‐dependent ER export of the Qc‐SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis . Journal of Cell Science, 131, jcs202838. PubMed
Dixon, D.C. , Cutt, J.R. & Klessig, D.F. (1991) Differential targeting of the tobacco PR‐1 pathogenesis‐related proteins to the extracellular space and vacuoles of crystal idioblasts. The EMBO Journal, 10, 1317–1324. PubMed PMC
Du, Y. , Mpina, M.H. , Birch, P.R.J. , Bouwmeester, K. & Govers, F. (2015) Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity. Plant Physiology, 169, 1975–1990. PubMed PMC
Ebine, K. , Fujimoto, M. , Okatani, Y. , Nishiyama, T. , Goh, T. , Ito, E. et al. (2011) A membrane trafficking pathway regulated by the plant‐specific RAB GTPase ARA6. Nature Cell Biology, 13, 853–859. PubMed
Feige, J.N. , Sage, D. , Wahli, W. , Desvergne, B. & Gelman, L. (2005) PixFRET, an ImageJ plug‐in for FRET calculation that can accommodate variations in spectral bleed‐throughs. Microscopy Research and Technique, 68, 51–58. PubMed
Gamir, J. , Darwiche, R. , van't Hof, P. , Choudhary, V. , Stumpe, M. , Schneiter, R. et al. (2017) The sterol‐binding activity of PATHOGENESIS‐RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. The Plant Journal, 89, 502–509. PubMed
Ge, Z. , Zhao, Y. , Liu, M.‐C. , Zhou, L.‐Z. , Wang, L. , Zhong, S. et al. (2019) LLG2/3 are co‐receptors in BUPS/ANX‐RALF signaling to regulate Arabidopsis pollen tube integrity. Current Biology, 29, 3256.e5. PubMed PMC
Gibbs, G.M. , Roelants, K. & O’Bryan, M.K. (2008) The CAP superfamily: cysteine‐rich secretory proteins, antigen 5, and pathogenesis‐related 1 proteins – roles in reproduction, cancer, and immune defense. Endocrine Reviews, 29, 865–897. PubMed
Gu, Y. & Innes, R.W. (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. The Plant Cell, 24, 4717–4730. PubMed PMC
Hála, M. , Cole, R. , Synek, L. , Drdová, E. , Pečenková, T. , Nordheim, A. et al. (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. The Plant Cell, 20, 1330–1345. PubMed PMC
Hansen, L.L. & Nielsen, M.E. (2017) Plant exosomes: using an unconventional exit to prevent pathogen entry?. Journal of Experimental Botany, 69, 59–68. PubMed
Hecker, A. , Wallmeroth, N. , Peter, S. , Blatt, M.R. , Harter, K. & Grefen, C. (2015) Binary 2in1 vectors improve in planta (co)localization and dynamic protein interaction studies. Plant Physiology, 168, 776–787. PubMed PMC
Hooft van Huijsduijnen, R.A.M. , Kauffmann, S. , Brederode, F.T. , Cornelissen, B.J.C. , Legrand, M. , Fritig, B. et al. (1987) Homology between chitinases that are induced by TMV infection of tobacco. Plant Molecular Biology, 9, 411–420. PubMed
Inada, N. , Betsuyaku, S. , Shimada, T.L. , Ebine, K. , Ito, E. , Kutsuna, N. et al. (2016) Modulation of plant RAB GTPase‐mediated membrane trafficking pathway at the interface between plants and obligate biotrophic pathogens. Plant and Cell Physiology, 57, 1854–1864. PubMed
Ito, E. , Uemura, T. , Ueda, T. & Nakano, A. (2016) Distribution of RAB5‐positive multivesicular endosomes and the trans‐Golgi network in root meristematic cells of Arabidopsis thaliana . Plant Biotechnol, 33, 281–286. PubMed PMC
van Loon, L.C. & van Kammen, A. (1970) Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology, 40, 199–211. PubMed
van Loon, L.C. , Rep, M. & Pieterse, C.M.J. (2006) Significance of inducible defense‐related proteins in infected plants. Annual Review of Phytopathology, 44(1), 135–162. PubMed
van Loon, L.C. & van Strien, E.A. (1999) The families of pathogenesis‐related proteins, their activities, and comparative analysis of PR‐1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.
Jelitto‐Van Dooren, E.P.W.M. , Vidal, S. & Denecke, J. (1999) Anticipating endoplasmic reticulum stress: a novel early response before pathogenesis‐related gene induction. The Plant Cell, 11, 1935–1943. PubMed PMC
Jia, T. , Gao, C. , Cui, Y. , Wang, J. , Ding, Y. , Cai, Y. et al. (2013) ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. Journal of Experimental Botany, 64, 2817–2829. PubMed PMC
Joosten, M.H.A.J. (2012) Isolation of apoplastic fluid from leaf tissue by the vacuum infiltration‐centrifugation technique. Methods in Molecular Biology, 835, 603–610. PubMed
Joshi, V. , Joshi, N. , Vyas, A. & Jadhav, S.K. (2021) Pathogenesis‐related proteins: role in plant defense. In: Jogaiah, S. (Ed.), Biocontrol agents and secondary metabolites. Woodhead Publishing, pp. 573–590.
Jung, H.W. & Hwang, B.K. (2000) Isolation, partial sequencing, and expression of pathogenesis‐related cDNA genes from pepper leaves infected by Xanthomonas campestris pv. vesicatoria . Molecular Plant‐Microbe Interactions, 13, 136–142. PubMed
Kalde, M. , Nühse, T.S. , Findlay, K. & Peck, S.C. (2007) The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis‐related protein 1. Proceedings of the National Academy of Sciences of the United States of America, 104, 11850–11855. PubMed PMC
Kama, R. , Gabriely, G. , Kanneganti, V. , Gerst, J.E. & Gilmore, R. (2018) Cdc48 and ubiquilins confer selective anterograde protein sorting and entry into the multivesicular body in yeast. Molecular Biology of the Cell, 29, 948–963. PubMed PMC
Karimi, M. , Inzé, D. & Depicker, A. (2002) GATEWAYTM vectors for Agrobacterium‐mediated plant transformation. Trends in Plant Science, 7, 193–195. PubMed
Klahre, U. , Becker, C. , Schmitt, A.C. & Kost, B. (2006) Nt‐RhoGDI2 regulates Rac/Rop signaling and polar cell growth in tobacco pollen tubes. The Plant Journal, 46, 1018–1031. PubMed
Kus, J.V. , Zaton, K. , Sarkar, R. & Cameron, R.K. (2002) Age‐related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae . The Plant Cell, 14, 479–490. PubMed PMC
Lincoln, J.E. , Sanchez, J.P. , Zumstein, K. & Gilchrist, D.G. (2018) Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Molecular Plant Pathology, 19, 2111–2123. PubMed PMC
Lu, S. , Faris, J.D. , Sherwood, R. & Edwards, M.C. (2013) Dimerization and protease resistance: new insight into the function of PR‐1. Journal of Plant Physiology, 170, 105–110. PubMed
Nakagawa, T. , Kurose, T. , Hino, T. , Tanaka, K. , Kawamukai, M. , Niwa, Y. et al. (2007) Development of series of Gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104, 34–41. PubMed
Nakano, R.T. , Yamada, K. , Bednarek, P. , Nishimura, M. & Hara‐Nishimura, I. (2014) ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 5, 73. PubMed PMC
Niderman, T. , Genetet, I. , Bruyère, T. , Gees, R. , Stintzi, A. , Legrand, M. et al. (1995) Pathogenesis‐related PR‐1 proteins are antifungal: isolation and characterization of three 14‐kilodalton proteins of tomato and of a basic PR‐1 of tobacco with inhibitory activity against Phytophthora infestans . Plant Physiology, 108, 17–27. PubMed PMC
Niehl, A. , Amari, K. , Gereige, D. , Brandner, K. , Mély, Y. & Heinlein, M. (2012) Control of Tobacco mosaic virus movement protein fate by CELL‐DIVISION‐CYCLE protein48. Plant Physiology, 160, 2093–2108. PubMed PMC
Ortmannová, J. , Sekereš, J. , Kulich, I. , Šantrůček, J. , Dobrev, P. , Žárský, V. et al. (2021) The EXO70B2 exocyst subunit contributes to papillae and encasement formation in anti‐fungal defence in Arabidopsis . Journal of Experimental Botany, 73, 742–755. PubMed
Pečenková, T. , Pleskot, R. & Žárský, V. (2017) Subcellular localization of Arabidopsis pathogenesis‐related 1 (PR1) protein. International Journal of Molecular Sciences, 18(4), 825. PubMed PMC
Pejchar, P. , Sekereš, J. , Novotný, O. , Žárský, V. & Potocký, M. (2020) Functional analysis of phospholipase Dδ family in tobacco pollen tubes. The Plant Journal, 103, 212–226. PubMed
Pruss, G.J. , Nester, E.W. & Vance, V. (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development‐dependent responses in the infiltrated zone. Molecular Plant‐Microbe Interactions, 21, 1528–1538. PubMed
Rauscher, M. , Ádám, A.L. , Wirtz, S. , Guggenheim, R. , Mendgen, K. & Deising, H.B. (1999) PR‐1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean. The Plant Journal, 19, 625–633. PubMed
Rivière, M.P. , Marais, A. , Ponchet, M. , Willats, W. & Galiana, E. (2008) Silencing of acidic pathogenesis‐related PR‐1 genes increases extracellular β‐(1→3)‐glucanase activity at the onset of tobacco defence reactions. Journal of Experimental Botany, 59, 1225–1239. PubMed
Saberianfar, R. & Menassa, R. (2017) Protein bodies: how the ER deals with high accumulation of recombinant proteins. Plant Biotechnology Journal, 15, 671–673. PubMed PMC
Santamaria, M. , Thomson, C.J. , Read, N.D. & Loake, G.J. (2001) The promoter of a basic PR1‐like gene, AtPRB1, from Arabidopsis establishes an organ‐specific expression pattern and responsiveness to ethylene and methyl jasmonate. Plant Molecular Biology, 47, 641–652. PubMed
Sarowar, S. , Young, J.K. , Eui, N.K. , Ki, D.K. , Byung, K.H. , Islam, R. et al. (2005) Overexpression of a pepper basic pathogenesis‐related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Reports, 24, 216–224. PubMed
Schindelin, J. , Arganda‐Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. et al. (2012) Fiji: an open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682. PubMed PMC
Sheng, J. , Olrichs, N.K. , Geerts, W.J. , Kaloyanova, D.V. & Helms, J.B. (2019) Metal ions and redox balance regulate distinct amyloid‐like aggregation pathways of GAPR‐1. Scientific Reports, 9, 15048. PubMed PMC
Sheng, J. , Olrichs, N.K. , Geerts, W.J. , Li, X. , Rehman, A.U. , Gadella, B.M. et al. (2019) Zinc binding regulates amyloid‐like aggregation of GAPR‐1. Bioscience Reports, 39, BSR20182345. PubMed PMC
Somssich, I.E. , Schmelzer, E. , Bollmann, J. & Hahlbrock, K. (1986) Rapid activation by fungal elicitor of genes encoding “pathogenesis‐related” proteins in cultured parsley cells. Proceedings of the National Academy of Sciences of the United States of America, 83, 2427–2430. PubMed PMC
Stintzi, A. , Heitz, T. , Prasad, V. , Wiedemann‐Merdinoglu, S. , Kauffmann, S. , Geoffroy, P. et al. (1993) Plant “pathogenesis‐related” proteins and their role in defense against pathogens. Biochimie, 75, 687–706. PubMed
Sung, Y.C. , Outram, M.A. , Breen, S. , Wang, C. , Dagvadorj, B. , Winterberg, B. et al. (2021) PR1‐mediated defence via C‐terminal peptide release is targeted by a fungal pathogen effector. New Phytologist, 229, 3467–3480. PubMed
Tao, K. , Waletich, J.R. , Wise, H. , Arredondo, F. & Tyler, B.M. (2019) Tethering of multi‐vesicular bodies and the tonoplast to the plasma membrane in plants. Frontiers in Plant Science, 10, 636. PubMed PMC
Tomczynska, I. , Stumpe, M. & Mauch, F. (2018) A conserved RxLR effector interacts with host RABA‐type GTPases to inhibit vesicle‐mediated secretion of antimicrobial proteins. The Plant Journal, 95, 187–203. PubMed
Vancová, M. , Bílý, T. , Nebesářová, J. , Grubhoffer, L. , Bonnet, S. , Park, Y. et al. (2019) Ultrastructural mapping of salivary gland innervation in the tick Ixodes ricinus . Scientific Reports, 9, 6860. PubMed PMC
Watanabe, S. , Shimada, T.L. , Hiruma, K. & Takano, Y. (2013) Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis . Plant Physiology, 163(2), 659–664. PubMed PMC
Webb, B. & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Protein Science, 2016, 5.6.1–5.6.37. PubMed
Woloshuk, C.P. , Meulenhoff, J.S. , Sela‐Buurlage, M. , van den Elzen, P.J.M. & Cornelissen, B.J.C. (1991) Pathogen‐induced proteins with inhibitory activity toward Phytophthora infestans . The Plant Cell, 3, 619–628. PubMed PMC
Wu, L. , Wu, H. , Chen, L. , Zhang, H. & Gao, X. (2017) Induction of systemic disease resistance in Nicotiana benthamiana by the cyclodipeptides cyclo (l‐Pro‐l‐Pro) and cyclo (d‐Pro‐d‐Pro). Molecular Plant Pathology, 18, 67–74. PubMed PMC
Yuan, J. & He, S.Y. (1996) The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. Journal of Bacteriology, 178, 6399–6402. PubMed PMC
Zhang, W.J. , Pedersen, C. , Kwaaitaal, M. , Gregersen, P.L. , Mørch, S.M. , Hanisch, S. et al. (2012) Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c. Molecular Plant Pathology, 13, 1110–1119. PubMed PMC
Small secreted proteins and exocytosis regulators: do they go along?