Shoot transcriptome revealed widespread differential expression and potential molecular mechanisms of chickpea (Cicer arietinum L.) against Fusarium wilt
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
38370576
PubMed Central
PMC10870781
DOI
10.3389/fmicb.2023.1265265
Knihovny.cz E-resources
- Keywords
- Fusarium wilt, RNA sequencing, chickpea, energy metabolism, environmental adaptation, transcriptome,
- Publication type
- Journal Article MeSH
INTRODUCTION: The yield of chickpea is severely hampered by infection wilt caused by several races of Fusarium oxysporum f. sp. ciceris (Foc). METHODS: To understand the underlying molecular mechanisms of resistance against Foc4 Fusarium wilt, RNA sequencing-based shoot transcriptome data of two contrasting chickpea genotypes, namely KWR 108 (resistant) and GL 13001 (susceptible), were generated and analyzed. RESULTS AND DISCUSSION: The shoot transcriptome data showed 1,103 and 1,221 significant DEGs in chickpea genotypes KWR 108 and GL 13001, respectively. Among these, 495 and 608 genes were significantly down and up-regulated in genotypes KWR 108, and 427 and 794 genes were significantly down and up-regulated in genotype GL 13001. The gene ontology (GO) analysis of significant DEGs was performed and the GO of the top 50 DEGs in two contrasting chickpea genotypes showed the highest cellular components as membrane and nucleus, and molecular functions including nucleotide binding, metal ion binding, transferase, kinase, and oxidoreductase activity involved in biological processes such as phosphorylation, oxidation-reduction, cell redox homeostasis process, and DNA repair. Compared to the susceptible genotype which showed significant up-regulation of genes involved in processes like DNA repair, the significantly up-regulated DEGs of the resistant genotypes were involved in processes like energy metabolism and environmental adaptation, particularly host-pathogen interaction. This indicates an efficient utilization of environmental adaptation pathways, energy homeostasis, and stable DNA molecules as the strategy to cope with Fusarium wilt infection in chickpea. The findings of the study will be useful in targeting the genes in designing gene-based markers for association mapping with the traits of interest in chickpea under Fusarium wilt which could be efficiently utilized in marker-assisted breeding of chickpea, particularly against Foc4 Fusarium wilt.
Department of Biology College of Science Taif University Taif Saudi Arabia
Division of Soil Science Bangladesh Wheat and Maize Research Institute Dinajpur Bangladesh
Institute of Plant and Environmental Sciences Slovak University of Agriculture Nitra Slovakia
See more in PubMed
Adugna A. (2004). Alternate approaches in deploying genes for disease resistance in crop plants. Asian J. Plant Sci. 3, 618–623. doi: 10.3923/ajps.2004.618.623 DOI
Ahn I. P. (2007). Disturbance of the Ca2+/calmodulin-dependent signalling pathway is responsible for the resistance of Arabidopsis dnd1 against Pectobacterium carotovorum infection. Mol. Plant Pathol. 8, 747–759. doi: 10.1111/j.1364-3703.2007.00428.x, PMID: PubMed DOI
Almeida-Silva F., Venancio T. M. (2022). Pathogenesis-related protein 1 (PR-1) genes in soybean: genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene 809:146013. doi: 10.1016/j.gene.2021.146013 PubMed DOI
Analin B., Mohanan A., Bakka K., Challabathula D. (2020). Cytochrome oxidase and alternative oxidase pathways of mitochondrial electron transport chain are important for the photosynthetic performance of pea plants under salinity stress conditions. Plant Physiol. Biochem. 154, 248–259. doi: 10.1016/j.plaphy.2020.05.022, PMID: PubMed DOI
Anuradha C., Chandrasekar A., Backiyarani S., Thangavelu R., Giribabu P., Uma S. (2022). Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene 821:146334. doi: 10.1016/j.gene.2022.146334, PMID: PubMed DOI
Asano T., Hayashi N., Kikuchi S., Ohsugi R. (2012). CDPK-mediated abiotic stress signaling. Plant Signal. Behav. 7, 817–821. doi: 10.4161/psb.20351 PubMed DOI PMC
Baba A. I., Rigó G., Andrási N., Tietz O., Palme K., Szabados L., et al. . (2019). “Striving towards abiotic stresses: role of the plant CDPK superfamily members” in International climate protection. eds. Palocz-Andresen M., Szalay D., Gosztom A., Sípos L., Taligás T. (Cham: Springer; ), 99–105.
Bashar K. K., Tareq M. Z., Islam M. S. (2020). Unlocking the mystery of plants’ survival capability under waterlogging stress. Plant Sci. Today 7, 142–153. doi: 10.14719/pst.2020.7.2.663 DOI
Bhandari D. D., Lapin D., Kracher B., von Born P., Bautor J., Niefind K., et al. . (2019). An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nat. Commun. 10:772. doi: 10.1038/s41467-019-08783-0, PMID: PubMed DOI PMC
Cai B., Ning Y., Li Q., Li Q., Ai X. (2022). Effects of the chloroplast fructose-1, 6-bisphosphate aldolase gene on growth and low-temperature tolerance of tomato. Int. J. Mol. Sci. 23:728. doi: 10.3390/ijms23020728, PMID: PubMed DOI PMC
Chakraborty S., Toyota M., Moeder W., Chin K., Fortuna A., Champigny M., et al. . (2021). CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiol. 187, 1690–1703. doi: 10.1093/plphys/kiab332, PMID: PubMed DOI PMC
Chang Y., Sun F., Sun S., Wang L., Wu J., Zhu Z. (2021). Transcriptome analysis of resistance to Fusarium wilt in mung bean (Vigna radiata L.). Front. Plant Sci. 12:1213. doi: 10.3389/fpls.2021.679629, PMID: PubMed DOI PMC
Cheng Z., Luan Y., Meng J., Sun J., Tao J., Zhao D. (2021). WRKY transcription factor response to high-temperature stress. Plan. Theory 10:2211. doi: 10.3390/plants10102211, PMID: PubMed DOI PMC
Chin K., Moeder W., Yoshioka K. (2009). Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20-member ion channel family. Botany 87, 668–677. doi: 10.1139/B08-147 DOI
Clough S. J., Fengler K. A., Yu I. C., Lippok B., Smith R. K., Bent A. F., Jr. (2000). The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. 97, 9323–9328. doi: 10.1073/pnas.15000569 PubMed DOI PMC
Dietrich P., Moeder W., Yoshioka K. (2020). Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiol. 184, 27–38. doi: 10.1104/pp.20.00425, PMID: PubMed DOI PMC
Espinoza C., Liang Y., Stacey G. (2017). Chitin receptor CERK 1 links salt stress and chitin-triggered innate immunity in Arabidopsis. Plant J. 89, 984–995. doi: 10.1111/tpj.13437 PubMed DOI
FAOSTAT . (2023). World Chickpea production in 2020–21, UN FAO, Corporate Statistical Database. Available at: https://www.fao.org/faostat/en/#data/QCL/visualize. Retrieved on 5 January 2023.
Gigli-Bisceglia N., Testerink C. (2021). Fighting salt or enemies: shared perception and signaling strategies. Curr. Opin. Plant Biol. 64:102120. doi: 10.1016/j.pbi.2021.102120 PubMed DOI
Gill N., Dhillon B. (2022). “RNA-seq data analysis for differential expression” in Fusarium wilt. Methods in molecular biology. ed. Coleman J., vol. 2391 (New York, NY: Humana; ) PubMed
Gleeson J., Leger A., Prawer Y. D., Lane T. A., Harrison P. J., Haerty W., et al. . (2022). Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. Nucleic Acids Res. 50:e19. doi: 10.1093/nar/gkab1129, PMID: PubMed DOI PMC
Gong B. Q., Wang F. Z., Li J. F. (2020). Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends Plant Sci. 25, 805–816. doi: 10.1016/j.tplants.2020.03.006 PubMed DOI
Grant M., Brown I., Adams S., Knight M., Ainslie A., Mansfield J. (2000). The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 23, 441–450. doi: 10.1046/j.1365-313x.2000.00804.x, PMID: PubMed DOI
Guerra-Castellano A., Díaz-Quintana A., Pérez-Mejías G., Elena-Real C. A., González-Arzola K., García-Mauriño S. M., et al. . (2018). Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc. Natl. Acad. Sci. 115, 7955–7960. doi: 10.1073/pnas.1806833115, PMID: PubMed DOI PMC
Guo J., Islam M. A., Lin H., Ji C., Duan Y., Liu P., et al. . (2018). Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14 and TaCNGC16. Front. Plant Sci. 9:18. doi: 10.3389/fpls.2018.00018, PMID: PubMed DOI PMC
Gupta S., Chakraborti D., Rangi R. K., Basu D., Das S. (2009). A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis. Phytopathology 99, 1245–1257. doi: 10.1094/PHYTO-99-11-1245 PubMed DOI
Haware M. P., Nene Y. L., Natarajan M. (1996). Survival of Fusarium oxysporum f. sp. ciceri in the soil in the absence of chickpea. Phytopathol. Mediterr. 35, 9–12.
Indiastat . (2023). India Chickpea production in 2020–21. Available at: https://www.indiastat.com/data/agriculture. Retrieved on 5 January 2023.
Jagodzik P., Tajdel-Zielinska M., Ciesla A., Marczak M., Ludwikow A. (2018). Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9:1387. doi: 10.3389/fpls.2018.01387, PMID: PubMed DOI PMC
Jendoubi W., Bouhadida M., Boukteb A., Béji M., Kharrat M. (2017). Fusarium wilt affecting chickpea crop. Agriculture 7:23. doi: 10.3390/agriculture7030023 DOI
Johanndrees O., Baggs E. L., Uhlmann C., Locci F., Läßle H. L., Melkonian K., et al. . (2023). Variation in plant toll/Interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. Plant Physiol. 191, 626–642. doi: 10.1093/plphys/kiac480, PMID: PubMed DOI PMC
Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. . (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13. doi: 10.3389/fenvs.2015.00013 DOI
Kattupalli D., Srinivasan A., Soniya E. V. (2021). A genome-wide analysis of pathogenesis-related Protein-1 (PR-1) genes from Piper nigrum reveals its critical role during Phytophthora capsici infection. Gene 12:1007. doi: 10.3390/genes12071007, PMID: PubMed DOI PMC
Keisa A., Kanberga-Silina K., Nakurte I., Kunga L., Rostoks N. (2011). Differential disease resistance response in the barley necrotic mutant nec1. BMC Plant Biol. 11:66. doi: 10.1186/1471-2229-11-66 PubMed DOI PMC
Kohli D., Joshi G., Deokar A. A., Bhardwaj A. R., Agarwal M., Katiyar-Agarwal S., et al. . (2014). Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 9:e108851. doi: 10.1371/journal.pone.0108851, PMID: PubMed DOI PMC
Kumar S., Sahni S., Kumar B. (2019). Screening of chickpea genotypes for resistance against Fusarium wilt. Current J. App. Sci. Technol. 38, 1–6. doi: 10.9734/CJAST/2019/v38i630409 DOI
Landi M., Guidi L. (2022). Effects of abiotic stress on photosystem II proteins. Photosynthetica 61, 148–156. doi: 10.32615/ps.2022.043 DOI
Lei Y. (2011). Biochemical and functional characterization of the mitochondrial immune Signaling protein complex. A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum of Oral Biology, School of Dentistry. doi: 10.17615/sr3j-8s02 DOI
Li J., Guo Y., Yang Y. (2022). The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. J. Genetics Genomics. 49, 715–725. doi: 10.1016/j.jgg.2022.05.007, PMID: PubMed DOI
Li Y., Zeng H., Xu F., Yan F., Xu W. (2022). H+-ATPases in plant growth and stress responses. Annu. Rev. Plant Biol. 73, 495–521. doi: 10.1146/annurev-arplant-102820-114551 PubMed DOI
Lin L., Wu J., Jiang M., Wang Y. (2021). Plant mitogen-activated protein kinase cascades in environmental stresses. Int. J. Mol. Sci. 22:1543. doi: 10.3390/ijms22041543, PMID: PubMed DOI PMC
Liu D., Li M., Guo T., Lu J., Xie Y., Hao Y., et al. . (2022). Functional characterization of the serine acetyltransferase family genes uncovers the diversification and conservation of cysteine biosynthesis in tomato. Front. Plant Sci. 13:913856. doi: 10.3389/fpls.2022.913856, PMID: PubMed DOI PMC
Liu F., Ma Z., Cai S., Dai L., Gao J., Zhou B. (2022). ATP-citrate lyase B (ACLB) negatively affects cell death and resistance to verticillium wilt. BMC Plant Biol. 22:443. doi: 10.1186/s12870-022-03834-z, PMID: PubMed DOI PMC
Luan S. (2009). The CBL-CIPK network in plant calcium signaling. Trends Plant Sci. 14, 37–42. doi: 10.1016/j.tplants.2008.10.005 PubMed DOI
Lv G. Y., Guo X. G., Xie L. P., Xie C. G., Zhang X. H., Yang Y., et al. . (2017). Molecular characterization, gene evolution, and expression analysis of the fructose-1, 6-bisphosphate aldolase (FBA) gene family in wheat (Triticum aestivum L.). Front. Plant Sci. 8:1030. doi: 10.3389/fpls.2017.01030, PMID: PubMed DOI PMC
Ma W., Berkowitz G. A. (2011). Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol. 190, 566–572. doi: 10.1111/j.1469-8137.2010.03577.x, PMID: PubMed DOI
Moradbeygi H., Jamei R., Heidari R., Darvishzadeh R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Sci. Hortic. 272:109537. doi: 10.1016/j.scienta.2020.109537 DOI
Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185. doi: 10.1093/nar/gkm321, PMID: PubMed DOI PMC
Mulet J. M., Alemany B., Ros R., Calvete J. J., Serrano R. (2004). Expression of a plant serine O-acetyltransferase in Saccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast 21, 303–312. doi: 10.1002/yea.1076, PMID: PubMed DOI
Neubauer M., Serrano I., Rodibaugh N., Bhandari D. D., Bautor J., Parker J. E., et al. . (2020). Arabidopsis EDR1 protein kinase regulates the association of EDS1 and PAD4 to inhibit cell death. Mol. Plant-Microbe Interact. 33, 693–703. doi: 10.1094/MPMI-12-19-0339-R, PMID: PubMed DOI PMC
Nisa M. U., Huang Y., Benhamed M., Raynaud C. (2019). The plant DNA damage response: signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front. Plant Sci. 10:653. doi: 10.3389/fpls.2019.00653 PubMed DOI PMC
Ochsenbein C., Przybyla D., Danon A., Landgraf F., Göbel C., Imboden A., et al. . (2006). The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J. 47, 445–456. doi: 10.1111/j.1365-313X.2006.02793.x, PMID: PubMed DOI
Pečenková T., Pejchar P., Moravec T., Drs M., Haluška S., Šantrůček J., et al. . (2022). Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. Mol. Plant Pathol. 23, 664–678. doi: 10.1111/mpp.13187, PMID: PubMed DOI PMC
Peng X., Zhang X., Li B., Zhao L. (2019). Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions. BMC Plant Biol. 19, 368–313. doi: 10.1186/s12870-019-1974-9, PMID: PubMed DOI PMC
Phukan U. J., Jeena G. S., Shukla R. K. (2016). WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci. 7:760. doi: 10.3389/fpls.2016.00760, PMID: PubMed DOI PMC
Ranty B., Aldon D., Cotelle V., Galaud J. P., Thuleau P., Mazars C. (2016). Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7:327. doi: 10.3389/fpls.2016.00327, PMID: PubMed DOI PMC
Rao D., Momcilovic I., Kobayashi S., Callegari E., Ristic Z. (2004). Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur. J. Biochem. 271, 3684–3692. doi: 10.1111/j.1432-1033.2004.04309.x, PMID: PubMed DOI
Reddy D. S., Bhatnagar-Mathur P., Reddy P. S., Sri Cindhuri K., Sivaji Ganesh A., Sharma K. K. (2016). Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild cicer species. PLoS One 11:e0148451. doi: 10.1371/journal.pone.0148451, PMID: PubMed DOI PMC
Robinson M. D., McCarthy D. J., Smyth G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. doi: 10.1093/bioinformatics/btp616, PMID: PubMed DOI PMC
Rudenko N. N., Borisova-Mubarakshina M. M., Ignatova L. K., Fedorchuk T. P., Nadeeva-Zhurikova E. M., Ivanov B. N. (2021). Role of plant carbonic anhydrases under stress conditions. Plant Stress Physiol. 4, 301–325. doi: 10.5772/intechopen.91971 DOI
Schmittgen T. D., Livak K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 3, 1101–1108. doi: 10.1038/nprot.2008.73, PMID: PubMed DOI
Sharma M., Nagavardhini A., Thudi M., Ghosh R., Pande S., Varshney R. K. (2014). Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.). BMC Genomics 15, 454–414. doi: 10.1186/1471-2164-15-454, PMID: PubMed DOI PMC
Sharma M., Sengupta A., Ghosh R., Agarwal G., Tarafdar A., Nagavardhini A., et al. . (2016). Genome wide transcriptome profiling of Fusarium oxysporum f sp. ciceris conidial germination reveals new insights into infection-related genes. Sci. Rep. 6, 1–11. doi: 10.1038/srep37353, PMID: PubMed DOI PMC
Sinha A. K., Jaggi M., Raghuram B., Tuteja N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6, 196–203. doi: 10.4161/psb.6.2.14701 PubMed DOI PMC
Song J., Zou X., Liu P., Cardoso J. A., Schultze-Kraft R., Liu G., et al. . (2022). Differential expressions and enzymatic properties of malate dehydrogenases in response to nutrient and metal stresses in Stylosanthes guianensis. Plant Physiol. Biochem. 170, 325–337. doi: 10.1016/j.plaphy.2021.12.012 PubMed DOI
Su W., Ren Y., Wang D., Su Y., Feng J., Zhang C., et al. . (2020). The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genomics 21, 521–517. doi: 10.1186/s12864-020-06929-9, PMID: PubMed DOI PMC
Sun M., Qiu L., Liu Y., Zhang H., Zhang Y., Qin Y., et al. . (2022). Pto interaction proteins: critical regulators in plant development and stress response. Front. Plant Sci. 13:774229. doi: 10.3389/fpls.2022.774229, PMID: PubMed DOI PMC
Szurman-Zubrzycka M., Jędrzejek P., Szarejko I. (2023). How do plants cope with DNA damage? A concise review on the DDR pathway in plants. Int. J. Mol. Sci. 24:2404. doi: 10.3390/ijms24032404, PMID: PubMed DOI PMC
Upasani M. L., Limaye B. M., Gurjar G. S., Kasibhatla S. M., Joshi R. R., Kadoo N. Y., et al. . (2017). Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci. Rep. 7, 1–12. doi: 10.1038/s41598-017-07114-x PubMed DOI PMC
Wang Y., Feng G., Zhang Z., Liu Y., Ma Y., Wang Y., et al. . (2021). Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Sci. 302:110702. doi: 10.1016/j.plantsci.2020.110702, PMID: PubMed DOI
Wang L., Li S., Sun L., Tong Y., Yang L., Zhu Y., et al. . (2022). Over-expression of phosphoserine aminotransferase-encoding gene (AtPSAT1) prompts starch accumulation in L. turionifera under nitrogen starvation. Int. J. Mol. Sci. 23:11563. doi: 10.3390/ijms231911563, PMID: PubMed DOI PMC
Wang J., Tian W., Tao F., Wang J., Shang H., Chen X., et al. . (2020). TaRPM1 positively regulates wheat high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. Frontiers. Plant Sci. 10:1679. doi: 10.3389/fpls.2019.01679, PMID: PubMed DOI PMC
Wang H., Zhao P., Shen X., Xia Z., Zhou X., Chen X., et al. . (2021). Genome-wide survey of the phosphofructokinase family in cassava and functional characterization in response to oxygen-deficient stress. BMC Plant Biol. 21, 376–315. doi: 10.1186/s12870-021-03139-7, PMID: PubMed DOI PMC
Wang N., Zhong X., Cong Y., Wang T., Yang S., Li Y., et al. . (2016). Genome-wide analysis of phosphoenolpyruvate carboxylase gene family and their response to abiotic stresses in soybean. Sci. Rep. 6, 1–14. doi: 10.1038/srep38448, PMID: PubMed DOI PMC
Waseem M., Ahmad F. (2019). The phosphoenolpyruvate carboxylase gene family identification and expression analysis under abiotic and phytohormone stresses in Solanum lycopersicum L. Gene 690, 11–20. doi: 10.1016/j.gene.2018.12.033, PMID: PubMed DOI
Wu W., Luo X., Ren M. (2022). Clearance or hijack: universal interplay mechanisms between viruses and host autophagy from plants to animals. Front. Cell. Infect. Microbiol. 11:1345. doi: 10.3389/fcimb.2021.786348, PMID: PubMed DOI PMC
Wu Y., Zhang L., Zhou J., Zhang X., Feng Z., Wei F., et al. . (2021). Calcium-dependent protein kinase GhCDPK28 was identified and involved in verticillium wilt resistance in cotton. Front. Plant Sci. 12:772649. doi: 10.3389/fpls.2021.772649, PMID: PubMed DOI PMC
Xue R., Wu X., Wang Y., Zhuang Y., Chen J., Wu J., et al. . (2017). Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. Plant Sci. 260, 1–7. doi: 10.1016/j.plantsci.2017.03.011, PMID: PubMed DOI
Yadav S., Rathore M. S., Mishra A. (2020). The pyruvate-phosphate dikinase (C4-SmPPDK) gene from Suaeda monoica enhances photosynthesis, carbon assimilation, and abiotic stress tolerance in a C3 plant under elevated CO2 conditions. Front. Plant Sci. 11:345. doi: 10.3389/fpls.2020.00345, PMID: PubMed DOI PMC
Yadava Y. K., Chaudhary P., Yadav S., Rizvi A. H., Kumar T., Srivastava R., et al. . (2023). Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.). Sci. Rep. 13:17623. doi: 10.1038/s41598-023-44990-y PubMed DOI PMC
Yan Z., Xingfen W., Wei R., Jun Y., Zhiying M. (2016). Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to verticillium dahliae by regulating the SA level and H2O2 accumulation. Front. Plant Sci. 7:1830. doi: 10.3389/fpls.2016.01830, PMID: PubMed DOI PMC
Yang X., Chen L., Yang Y., Guo X., Chen G., Xiong X., et al. . (2020). Transcriptome analysis reveals that exogenous ethylene activates immune and defense responses in a high late blight resistant potato genotype. Sci. Rep. 10, 21294–21314. doi: 10.1038/s41598-020-78027-5, PMID: PubMed DOI PMC
Yin G., Sun H., Xin X., Qin G., Liang Z., Jing X. (2009). Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiol. 50, 1305–1318. doi: 10.1093/pcp/pcp074, PMID: PubMed DOI
Zeng H., Xu L., Singh A., Wang H., Du L., Poovaiah B. W. (2015). Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front. Plant Sci. 6:600. doi: 10.3389/fpls.2015.00600, PMID: PubMed DOI PMC
Zhang M., Zhang S. (2022). Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol. 64, 301–341. doi: 10.1111/jipb.13215, PMID: PubMed DOI
Zhao C., Tang Y., Wang J., Zeng Y., Sun H., Zheng Z., et al. . (2021). A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol. 230, 1078–1094. doi: 10.1111/nph.17218, PMID: PubMed DOI