Small secreted proteins and exocytosis regulators: do they go along?
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36774640
PubMed Central
PMC9930824
DOI
10.1080/15592324.2022.2163340
Knihovny.cz E-zdroje
- Klíčová slova
- CLE, PR1, SNARE, co-expression, exocyst, secretion,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- cytoplazma metabolismus MeSH
- exocytóza fyziologie MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- proteiny SNARE metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny huseníčku * MeSH
- proteiny SNARE MeSH
Small secreted proteins play an important role in plant development, as well as in reactions to changes in the environment. In Arabidopsis thaliana, they are predominantly members of highly expanded families, such as the pathogenesis-related (PR) 1-like protein family, whose most studied member PR1 is involved in plant defense responses by a so far unknown mechanism, or Clavata3/Endosperm Surrounding Region (CLE) protein family, whose members' functions in the development are well described. Our survey of the existing literature for the two families showed a lack of details on their localization, trafficking, and exocytosis. Therefore, in order to uncover the modes of their secretion, we tested the hypothesis that a direct link between the secreted cargoes and the secretion regulators such as Rab GTPases, SNAREs, and exocyst subunits could be established using in silico co-expression and clustering approaches. We employed several independent techniques to uncover that only weak co-expression links could be found for limited numbers of secreted cargoes and regulators. We propose that there might be particular spatio-temporal requirements for PR1 and CLE proteins to be synthesized and secreted, and efforts to experimentally cover these discrepancies should be invested along with functional studies.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Farvardin A, González-Hernández AI, Llorens E, García-Agustín P, Scalschi L, Vicedo B.. The Apoplast: a Key Player in Plant Survival. Antioxidants (Basel). 2020;9(7):604. doi:10.3390/antiox9070604. PubMed DOI PMC
Guerra-Guimarães L, Pinheiro C, Chaves I, Barros DR, Ricardo CP. Protein Dynamics in the Plant Extracellular Space. Proteomes. 2016;4(3):22. doi:10.3390/proteomes4030022. PubMed DOI PMC
Inada N, Ueda T. Membrane trafficking pathways and their roles in plant-microbe interactions. Plant Cell Physiol. 2014;55(4):672–7. doi:10.1093/pcp/pcu046. PubMed DOI
Kim SJ, Brandizzi F. The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol. 2014;55(4):687–693. doi:10.1093/pcp/pct197. PubMed DOI
Thiel G, Battey N. Exocytosis in plants. Plant Mol Biol. 1998. PMID: 9738963;38(1–2):111–125. doi:10.1023/A:1006038122009. PubMed DOI
Martinière A, Moreau P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never-ending story. J Microsc. 2020;280(2):140–157. doi:10.1111/jmi.12952. PubMed DOI
Yamaguchi YL, Ishida T, Sawa S. CLE Peptides and Their Signaling Pathways in Plant Development. Journal of Experimental Botany. 2016;67(16):4813–4826. doi:10.1093/jxb/erw208. PubMed DOI
Jun JH, Fiume E, Roeder AH, Meng L, Sharma VK, Osmont KS,B, Baker C, Ha CM, Meyerowitz EM, Feldman LJ, et al. Comprehensive Analysis of CLE Polypeptide Signaling Gene Expression and Overexpression Activity in Arabidopsis. Plant Physiol. 2010;154(4):1721–1736. doi:10.1104/pp.110.163683. PubMed DOI PMC
Song XF, Hou XL, Liu CM. CLE Peptides: critical Regulators for Stem Cell Maintenance in Plants. Planta. 2022;255(1). doi:10.1007/s00425-021-03791-1. PubMed DOI
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science. 2000. Jul 28;289(5479):617–619. doi:10.1126/science.289.5479.617. PubMed DOI
Gregory EF, Dao TQ, Alexander MA, Miller MJ, Fletcher JC, Candela H. The Signaling Peptide-Encoding Genes CLE16, CLE17 and CLE27 Are Dispensable for Arabidopsis Shoot Apical Meristem Activity. PLoS ONE. 2018;13(8):8. doi:10.1371/journal.pone.0202595. PubMed DOI PMC
Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, et al. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet. 2019;51(5):786–792. doi:10.1038/s41588-019-0389-8. PubMed DOI PMC
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P. Plant CLE Peptides from Two Distinct Functional Classes Synergistically Induce Division of Vascular Cells. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(47):18625–18630. doi:10.1073/pnas.0809395105. PubMed DOI PMC
Ghorbani S, Hoogewijs K, Pečenková T, Fernandez A, Inzé A, Eeckhout D, Kawa D, De Jaeger G, Beeckman T, Madder A, et al. The SBT6.1 Subtilase Processes the GOLVEN1 Peptide Controlling Cell Elongation. Journal of Experimental Botany. 2016;67(16):4877–4887. doi:10.1093/jxb/erw241. PubMed DOI PMC
Stührwohldt N, Ehinger A, Thellmann K, Schaller A. Processing and Formation of Bioactive CLE40 Peptide Are Controlled by Posttranslational Proline Hydroxylation. Plant Physiology. 2020;184(3):1573–1584. doi:10.1104/pp.20.00528. PubMed DOI PMC
Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, Schaller A. The Biogenesis of Clel Peptides Involves Several Processing Events in Consecutive Compartments of the Secretory Pathway. ELife. 2020:9. doi:10.7554/eLife.55580. PubMed DOI PMC
Fukuda H, Hardtke CS. Peptide Signaling Pathways in Vascular Differentiation. Plant Physiol. 2020;182(4):1636–1644. doi:10.1104/pp.19.01259. PubMed DOI PMC
Breen S, Williams SJ, Outram M, Kobe B, Solomon PS. Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science. 2017;22(10):871–879. doi:10.1016/j.tplants.2017.06.013. PubMed DOI
Gibbs GM, Roelants K, O’Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins–roles in reproduction, cancer, and immune defense. Endocr Rev. 2008;29(7):865–897. doi:10.1210/er.2008-0032. PubMed DOI
Agrios GN. How plants defend themselves against pathogens. In: Agrios GN editor. Plant Pathology. Amsterdam: Academic Press; 2005. p. 207–248.
Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, Mauch F. The Sterol-Binding Activity of PATHOGENESIS-RELATED PROTEIN 1 Reveals the Mode of Action of an Antimicrobial Protein. Plant Journal. 2017;89(3):502–509. doi:10.1111/tpj.13398. PubMed DOI
Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR. Quantitative Peptidomics Study Reveals That a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato. Plant Cell. 2014;26(10):4135–4148. doi:10.1105/tpc.114.131185. PubMed DOI PMC
Sung YC, Outram MA, Breen S, Wang C, Dagvadorj B, Winterberg B, Kobe B, Williams SJ, Solomon PS. PR1-Mediated Defence via C-Terminal Peptide Release Is Targeted by a Fungal Pathogen Effector. New Phytologist. 2021;229(6):3467–3480. doi:10.1111/nph.17128. PubMed DOI
Betsuyaku S, Katou S, Takebayashi Y, Sakakibara H, Nomura N, Fukuda H. Salicylic Acid and Jasmonic Acid Pathways Are Activated in Spatially Different Domains around the Infection Site during Effector-Triggered Immunity in Arabidopsis Thaliana. Plant and Cell Physiology. 2018;59(1):8–16. doi:10.1093/pcp/pcx181. PubMed DOI PMC
Lincoln JE, Sanchez JP, Zumstein K, Gilchrist DG. Plant and Animal PR1 Family Members Inhibit Programmed Cell Death and Suppress Bacterial Pathogens in Plant Tissues. Molecular Plant Pathology. 2018;19(9):2111–2123. doi:10.1111/mpp.12685. PubMed DOI PMC
Pečenková T, Pejchar P, Moravec T, Drs M, Haluška S, Šantrůček J, Potocká A, Žárský V, Potocký M. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. Molecular Plant Pathology. 2022. February;23(5):664–678. doi:10.1111/mpp.13187. PubMed DOI PMC
van Loon LC, Rep M, Pieterse CM. Significance of Inducible Defense-Related Proteins in Infected Plants. Annual Review of Phytopathology. 2006. doi:10.1146/annurev.phyto.44.070505.143425. PubMed DOI
Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. Plant Physiol. 2022;189(3):1639–1661. doi:10.1093/plphys/kiac149. PubMed DOI PMC
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci. 2018;131(2):jcs202838. doi:10.1242/jcs.202838. PubMed DOI
Du Y, Mpina MH, Birch PR, Bouwmeester K, Govers F. Phytophthora infestans RXLR Effector AVR1 Interacts with Exocyst Component Sec5 to Manipulate Plant Immunity. Plant Physiol. 2015. Nov;169(3):1975–1990. doi: 10.1104/pp.15.01169. PubMed DOI PMC
Gu Y, Innes RW. The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell. 2012;24(11):4717–4730. doi:10.1105/tpc.112.105254. PubMed DOI PMC
Kalde M, Nühse TS, Findlay K, Peck SC. The Syntaxin SYP132 Contributes to Plant Resistance against Bacteria and Secretion of Pathogenesis-Related Protein 1. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(28):11850–11855. doi:10.1073/pnas.0701083104. PubMed DOI PMC
Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for systemic acquired resistance. Science. 2005;308(5724):1036–1040. doi:10.1126/science. PubMed DOI
Pečenková T, Pleskot R, Žárský V. Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein. International Journal of Molecular Sciences. 2017;18(4):825. doi:10.3390/ijms18040825. PubMed DOI PMC
Laird J, Armengaud P, Giuntini P, Laval V, Milner JJ. Inappropriate annotation of a key defence marker in Arabidopsis: will the real PR-1 please stand up? Planta. 2004;219(6):1089–1092. doi:10.1007/s00425-004-1355-x. PubMed DOI
Chien PS, Nam HG, Chen YR. A Salt-Regulated Peptide Derived from the CAP Superfamily Protein Negatively Regulates Salt-Stress Tolerance in Arabidopsis. Journal of Experimental Botany. 2015;66(17):5301–5313. doi:10.1093/jxb/erv263. PubMed DOI PMC
Santamaria M, Thomson CJ, Read ND, Loake GJ. The Promoter of a Basic PR1-like Gene, AtPRB1, from Arabidopsis Establishes an Organ-Specific Expression Pattern and Responsiveness to Ethylene and Methyl Jasmonate. Plant Molecular Biology. 2001;47(5):641–652. PubMed
Pratelli R, Sutter JU, Blatt MR. A new catch in the SNARE. Trends in Plant Science. 2004;9(4):187–195. doi:10.1016/j.tplants.2004.02.007. PMID: 15063869 PubMed DOI
Vernoud V, Horton AC, Yang Z, Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiology. 2003;131(3):1191–1208. doi:10.1104/pp.013052. PubMed DOI PMC
Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Bot. 2020;71(1):49–62. doi:10.1093/jxb/erz423. PubMed DOI
Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, Bågman AM, Foret J, Abbitt S, Tang M, Li B, et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature. 2018;563(7730):259–264. doi:10.1038/s41586-018-0656-3. PubMed DOI
Rao X, Chen X, Shen H, Ma Q, Li G, Tang Y, Pena M, York W, Frazier TP, Lenaghan S, et al. Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum). Plant Biotechnol J. 2019;17(3):580–593. doi:10.1111/pbi.13000. PubMed DOI PMC
Zhou Y, Sukul A, Mishler-Elmore JW, Faik A, Held MA. PlantNexus: a Gene Co-expression Network Database and Visualization Tool for Barley and Sorghum. Plant Cell Physiol. 2022;63(4):565–572. doi:10.1093/pcp/pcac007. PubMed DOI PMC
Gaudinier A, Brady SM. Mapping Transcriptional Networks in Plants: data-Driven Discovery of Novel Biological Mechanisms.”. Annu Rev Plant Biol. 2016;67(1):575–594. doi:10.1146/annurev-arplant-043015-112205. PubMed DOI
Liu ZP. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data. Curr Genomics. 2015;16(1):3–22. doi:10.2174/1389202915666141110210634. PubMed DOI PMC
Chen X, Pan Y, Yan M, Bao G, Sun X. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis. Mol Med Rep. 2020;22(2):859–869. doi:10.3892/mmr.2020.11160. PubMed DOI PMC
Quan W, Li J, Jin X, Liu L, Zhang Q, Qin Y, Pei X, Chen J. Identification of Potential Core Genes in Parkinson’s Disease Using Bioinformatics Analysis. Parkinsons Dis. 2021;2021:1690341. doi:10.1155/2021/1690341. PubMed DOI PMC
Coninck B, De Smet I. Plant Peptides - Taking Them to the next Level. Journal of Experimental Botany. 2016;67(16):4791–4795. doi:10.1093/jxb/erw309. PubMed DOI PMC
Nakamura S, Suzuki T, Kawamukai M, Nakagawa T. Expression Analysis of Arabidopsis Thaliana Small Secreted Protein Genes. Bioscience, Biotechnology and Biochemistry. 2012;76(3):436–446. doi:10.1271/bbb.110649. PubMed DOI
Couto D, Zipfel C. Regulation of Pattern Recognition Receptor Signalling in Plants. Nature Reviews Immunology. 2016;16(9):537–552. doi:10.1038/nri.2016.77. PubMed DOI
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131. PubMed DOI PMC
Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K. ATTED-II in 2018: a Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index. Plant Cell Physiol. 2018;59(1):e3. doi:10.1093/pcp/pcx191. PubMed DOI PMC
Obayashi T, Hibara H, Kagaya Y, Aoki Y, Kinoshita K . ATTED-II v11: A Plant Gene Coexpression Database Using a Sample Balancing Technique by Subagging of Principal Components. Plant Cell Physiol. 2022. Jun 15;63(6):869–881. doi:10.1093/pcp/pcac041. PMID: 35353884. PubMed DOI
Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. Genevestigator V3: a Reference Expression Database for the Meta-Analysis of Transcriptomes. Advances in Bioinformatics. 2008;2008:1–5. doi:10.1155/2008/420747. PubMed DOI PMC
Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S, Shikata H, Messerer M, et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020;579(7799):409–414. doi:10.1038/s41586-020-2094-2. PubMed DOI
Salomon D Historical Notes. In: Gries D, F.B S., editors The Computer Graphics Manual. Springer; London, UK: 2011. pp. 9–27.
Pečenková T, Potocká A, Ortmannová, M, Drs M, J, Janková Drdová, E, Pejchar, P, Synek, L, Soukupová, H, Žárský, V, Cvrčková, F, et al. Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses. Frontiers in Plant Science. 2020;11:11. doi:10.3389/fpls.2020.00960. PubMed DOI PMC
Benschop JJ, Mohammed S, O’Flaherty M, Heck AJ, Slijper M, Menke FL. Quantitative Phosphoproteomics of Early Elicitor Signaling in Arabidopsis. Molecular and Cellular Proteomics. 2007;6(7):1198–1214. doi:10.1074/mcp.M600429-MCP200. PubMed DOI