Subcellular Localization of Arabidopsis Pathogenesis-Related 1 (PR1) Protein
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28406455
PubMed Central
PMC5412409
DOI
10.3390/ijms18040825
PII: ijms18040825
Knihovny.cz E-zdroje
- Klíčová slova
- CAPE, MVB, PI(3)P, PR1, secretion, trafficking,
- MeSH
- Arabidopsis metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- endozomy metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- Golgiho aparát metabolismus MeSH
- konfokální mikroskopie MeSH
- listy rostlin metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- proteiny huseníčku genetika metabolismus MeSH
- rekombinantní fúzní proteiny biosyntéza genetika MeSH
- tabák metabolismus MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositolfosfáty MeSH
- phosphatidylinositol 3-phosphate MeSH Prohlížeč
- PR-1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- rekombinantní fúzní proteiny MeSH
- zelené fluorescenční proteiny MeSH
The Arabidopsisthaliana pathogenesis-related 1 (PR1) is an important defense protein, so far it has only been detected in extracellular space and its subcellular sorting and transport remain unexplained. Using a green fluorescent protein (GFP) tagged full length, as well as a C-terminus truncated version of PR1, we observed that when expressed ectopically in Nicotiana benthamiana leaves, PR1 co-localizes only partially with Golgi markers, and much more prominently with the late endosome (LE)/multivesicular body (MVB) FYVE marker. The C-truncated version PR1ΔC predominantly localized to the endoplasmic reticulum (ER). The same localizations were found for stable Arabidopsis transformants with expression of PR1 and PR1ΔC driven by the native promoter. We conclude that the A. thaliana PR1 (AtPR1) undergoes an unconventional secretion pathway, starting from the C-terminus-dependent sorting from the ER, and utilizing further transportation via phosphatidyl-inositol-3-phosphate (PI(3)P) positive LE/MVB-like vesicles. The homology model of the PR1 structure shows that the cluster of positively charged amino acid residues (arginines 60, 67, 137, and lysine 135) could indeed interact with negatively charged phospholipids of cellular membranes. It remains to be resolved whether Golgi and LE/MVB localization reflects an alternative sorting or trafficking succession, and what the role of lipid interactions in it will be.
Zobrazit více v PubMed
Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B. Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie. 1993;75:687–706. doi: 10.1016/0300-9084(93)90100-7. PubMed DOI
Van Loon L.C., Pierpoint W.S., Boller T., Conejero V. Recommendations for naming plant pathogenesis-related proteins. Plant Mol. Biol. Rep. 1994;12:245–264. doi: 10.1007/BF02668748. DOI
Van Loon L.C., van Kammen A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. “Samsun” and “Samsun NN”. II. Changes in protein constitution after infection with tobacco mosaic virus. Virology. 1970;40:190–211. doi: 10.1016/0042-6822(70)90395-8. PubMed DOI
Van Loon L.C., Van Strien E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999;55:85–97. doi: 10.1006/pmpp.1999.0213. DOI
Schreiber M.C., Karlo J.C., Kovalick G.E. A novel cDNA from Drosophila encoding a protein with similarity to mammalian cysteine-rich secretory proteins, wasp venom antigen 5, and plant group 1 pathogenesis-related proteins. Gene. 1997;191:135–141. doi: 10.1016/S0378-1119(97)00010-3. PubMed DOI
Van Loon L.C., Rep M., Pieterse C.M. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 2006;44:135–162. doi: 10.1146/annurev.phyto.44.070505.143425. PubMed DOI
Mitsuhara I., Iwai T., Seo S., Yanagawa Y., Kawahigasi H., Hirose S., Ohkawa Y., Ohashi Y. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds (121/180) Mol. Genet. Genom. 2008;279:415–427. doi: 10.1007/s00438-008-0322-9. PubMed DOI PMC
Gu Y., Innes R.W. The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell. 2012;24:4717–4730. doi: 10.1105/tpc.112.105254. PubMed DOI PMC
Stone S.L., Williams L.A., Farmer L.M., Vierstra R.D., Callis J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell. 2006;18:3415–3428. doi: 10.1105/tpc.106.046532. PubMed DOI PMC
Haseloff J., Siemering K.R., Prasher D.C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA. 1997;94:2122–2127. doi: 10.1073/pnas.94.6.2122. PubMed DOI PMC
Hayashi Y., Yamada K., Shimada T., Matsushima R., Nishizawa N.K., Nishimura M., Hara-Nishimura I. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant Cell Physiol. 2001;42:894–899. doi: 10.1093/pcp/pce144. PubMed DOI
Watanabe S., Shimada T.L., Hiruma K., Takano Y. Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. Plant Physiol. 2013;163:659–664. doi: 10.1104/pp.113.217364. PubMed DOI PMC
Broekaert W.F., Terras F.R.G., Cammue B.P.A. Induced and preformed antimicrobial proteins. In: Slusarenko A.J., Fraser R.S.S., Van Loon L.C., editors. Mechanisms of Resistance to Plant Diseases. Dordrecht; Kluwer, The Netherlands: 2000. pp. 371–477.
Rivière M.P., Marais A., Ponchet M., Willats W., Galiana E. Silencing of acidic pathogenesis-related PR-1 genes increases extracellular β-(1–>3)-glucanase activity at the onset of tobacco defence reactions. J. Exp. Bot. 2008;59:1225–1239. doi: 10.1093/jxb/ern044. PubMed DOI
Chen Y.L., Lee C.Y., Cheng K.T., Chang W.H., Huang R.N., Nam H.G., Chen Y.R. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell. 2014;26:4135–4148. doi: 10.1105/tpc.114.131185. PubMed DOI PMC
Chien P.S., Nam H.G., Chen Y.R. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J. Exp. Bot. 2015;66:5301–5313. doi: 10.1093/jxb/erv263. PubMed DOI PMC
Nelson B.K., Cai X., Nebenführ A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007;51:1126–1136. doi: 10.1111/j.1365-313X.2007.03212.x. PubMed DOI
Saint-Jore-Dupas C., Nebenführ A., Boulaflous A., Follet-Gueye M.L., Plasson C., Hawes C., Driouich A., Faye L., Gomord V. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell. 2006;18:3182–3200. doi: 10.1105/tpc.105.036400. PubMed DOI PMC
Dorokhov Y.L., Skurat E.V., Frolova O.Y., Gasanova T.V., Ivanov P.A., Ravin N.V., Skryabin K.G., Mäkinen K.M., Klimyuk V.I., Gleba Y.Y., et al. Role of the leader sequence in tobacco pectin methylesterase secretion. FEBS Lett. 2006;580:3329–3334. doi: 10.1016/j.febslet.2006.04.090. PubMed DOI
Honig A., Avin-Wittenberg T., Ufaz S., Galili G. A new type of compartment, defined by plant-specific Atg8-interacting proteins, is induced upon exposure of Arabidopsis plants to carbon starvation. Plant Cell. 2012;24:288–303. doi: 10.1105/tpc.111.093112. PubMed DOI PMC
Voigt B., Timmers A.C., Samaj J., Hlavacka A., Ueda T., Preuss M., Nielsen E., Mathur J., Emans N., Stenmark H., et al. Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur. J. Cell Biol. 2005;84:609–621. doi: 10.1016/j.ejcb.2004.12.029. PubMed DOI
Sessa G., Yang X.Q., Raz V., Eyal Y., Fluhr R. Dark induction and subcellular localization of the pathogenesis-related PRB-1b protein. Plant Mol. Biol. 1995;28:537–547. doi: 10.1007/BF00020400. PubMed DOI
Berson T., von Wangenheim D., Takáč T., Šamajová O., Rosero A., Ovečka M., Komis G., Stelzer E.H., Šamaj J. Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol. 2014;14:252. doi: 10.1186/s12870-014-0252-0. PubMed DOI PMC
Kim D.H., Eu Y.J., Yoo C.M., Kim Y.W., Pih K.T., Jin J.B., Kim S.J., Stenmark H., Hwang I. Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell. 2001;13:287–301. doi: 10.1105/tpc.13.2.287. PubMed DOI PMC
Kolb C., Nagel M.K., Kalinowska K., Hagmann J., Ichikawa M., Anzenberger F., Alkofer A., Sato M.H., Braun P., Isono E. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. Plant Physiol. 2015;167:1361–1373. doi: 10.1104/pp.114.253377. PubMed DOI PMC
Van Galen J., van Balkom B.W., Serrano R.L., Kaloyanova D., Eerland R., Stüven E., Helms J.B. Binding of GAPR-1 to negatively charged phospholipid membranes: Unusual binding characteristics to phosphatidylinositol. Mol. Membr. Biol. 2010;27:81–91. doi: 10.3109/09687680903507080. PubMed DOI
Van Galen J., Olrichs N.K., Schouten A., Serrano R.L., Nolte Hoen E.N., Eerland R., Kaloyanova D., Gros P., Helms J.B. Interaction of GAPR-1 with lipid bilayers is regulated by alternative homodimerization. Biochim. Biophys. Acta. 2012;1818:2175–2183. doi: 10.1016/j.bbamem.2012.04.016. PubMed DOI
Montesinos J.C., Sturm S., Langhans M., Hillmer S., Marcote M.J., Robinson D.G., Aniento F. Coupled transport of Arabidopsis p24 proteins at the ER-Golgi interface. J. Exp. Bot. 2012;63:4243–4261. doi: 10.1093/jxb/ers112. PubMed DOI PMC
Axe E.L., Walker S.A., Manifava M., Chandra P., Roderick H.L., Habermann A., Griffiths G., Ktistakis N.T. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008;182:685–701. doi: 10.1083/jcb.200803137. PubMed DOI PMC
Bhattacharjee S., Speicher KD., Stahelin R.V., Speicher D.W., Haldar K. PI(3)P-independent and -dependent pathways function together in a vacuolar translocation sequence to target malarial proteins to the host erythrocyte. Mol. Biochem. Parasitol. 2012;185:106–113. doi: 10.1016/j.molbiopara.2012.07.004. PubMed DOI PMC
Nakagawa T., Kurose T., Hino T., Tanaka K., Kawamukai M., Niwa Y., Toyooka K., Matsuoka K., Jinbo T., Kimura T. Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J. Biosci. Bioeng. 2007;104:34–41. doi: 10.1263/jbb.104.34. PubMed DOI
Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Schindelin J., Rueden C.T., Hiner M.C., Eliceiri K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015;82:518–529. doi: 10.1002/mrd.22489. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Hála M., Cole R., Synek L., Drdová E., Pecenková T., Nordheim A., Lamkemeyer T., Madlung J., Hochholdinger F., Fowler J.E., et al. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell. 2008;20:1330–1345. doi: 10.1105/tpc.108.059105. PubMed DOI PMC
Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T.G., Bertoni M., Bordoli L., Schwede T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–W258. doi: 10.1093/nar/gku340. PubMed DOI PMC
Wiederstein M., Sippl M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. doi: 10.1093/nar/gkm290. PubMed DOI PMC
Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Small secreted proteins and exocytosis regulators: do they go along?
SH3Ps-Evolution and Diversity of a Family of Proteins Engaged in Plant Cytokinesis