Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 35305-B
FWF Austrian Science Fund
PubMed
38894105
PubMed Central
PMC11174775
DOI
10.3390/s24113309
PII: s24113309
Knihovny.cz E-zdroje
- Klíčová slova
- magnetic resonance imaging, magnetic resonance spectroscopy, muscle metabolism, radiofrequency coil, ultra-high field,
- MeSH
- fantomy radiodiagnostické * MeSH
- kosterní svaly * diagnostické zobrazování chemie MeSH
- kyselina mléčná chemie metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie * metody MeSH
- poměr signál - šum MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina mléčná MeSH
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.
Zobrazit více v PubMed
Meyerspeer M., Boesch C., Cameron D., Dezortová M., Forbes S.C., Heerschap A., Jeneson J.A.L., Kan H.E., Kent J., Layec G., et al. 31P Magnetic Resonance Spectroscopy in Skeletal Muscle: Experts’ Consensus Recommendations. NMR Biomed. 2021;34:e4246. doi: 10.1002/nbm.4246. PubMed DOI PMC
Kumar V., Chang H., Reiter D.A., Bradley D.P., Belury M., McCormack S.E., Raman S.V. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle. J. Vis. Exp. 2017;119:54977. doi: 10.3791/54977. PubMed DOI PMC
Šedivý P., Christina Kipfelsberger M., Dezortová M., Krššák M., Drobný M., Chmelík M., Rydlo J., Trattnig S., Hájek M., Valkovič L. Dynamic 31 P MR Spectroscopy of Plantar Flexion: Influence of Ergometer Design, Magnetic Field Strength (3 and 7 T), and RF-coil Design. Med. Phys. 2015;42:1678–1689. doi: 10.1118/1.4914448. PubMed DOI
Schmid A.I., Meyerspeer M., Robinson S.D., Goluch S., Wolzt M., Fiedler G.B., Bogner W., Laistler E., Krššák M., Moser E., et al. Dynamic PCr and pH Imaging of Human Calf Muscles during Exercise and Recovery Using 31 P gradient-Echo MRI at 7 Tesla. Magn. Reson. Med. 2016;75:2324–2331. doi: 10.1002/mrm.25822. PubMed DOI
Krššák M., Lindeboom L., Schrauwen-Hinderling V., Szczepaniak L.S., Derave W., Lundbom J., Befroy D., Schick F., Machann J., Kreis R., et al. Proton Magnetic Resonance Spectroscopy in Skeletal Muscle: Experts’ Consensus Recommendations. NMR Biomed. 2021;34:e4266. doi: 10.1002/nbm.4266. PubMed DOI PMC
Ren J., Lakoski S., Haller R.G., Sherry A.D., Malloy C.R. Dynamic Monitoring of Carnitine and Acetylcarnitine in the Trimethylamine Signal after Exercise in Human Skeletal Muscle by 7T 1H-MRS. Magn. Reson. Med. 2013;69:7–17. doi: 10.1002/mrm.24249. PubMed DOI PMC
Klepochová R., Niess F., Meyerspeer M., Slukova D., Just I., Trattnig S., Ukropec J., Ukropcová B., Kautzky-Willer A., Leutner M., et al. Correlation between Skeletal Muscle Acetylcarnitine and Phosphocreatine Metabolism during Submaximal Exercise and Recovery: Interleaved 1H/31P MRS 7 T Study. Sci. Rep. 2024;14:3254. doi: 10.1038/s41598-024-53221-x. PubMed DOI PMC
Boesch C. Musculoskeletal Spectroscopy. J. Magn. Reson. Imaging. 2007;25:321–338. doi: 10.1002/jmri.20806. PubMed DOI
Kreis R., Bruegger K., Skjelsvik C., Zwicky S., Ith M., Jung B., Baumgartner I., Boesch C. Quantitative 1H Magnetic Resonance Spectroscopy of Myoglobin de- and Reoxygenation in Skeletal Muscle: Reproducibility and Effects of Location and Disease. Magn. Reson. Med. 2001;46:240–248. doi: 10.1002/mrm.1184. PubMed DOI
Kreis R., Jung B., Slotboom J., Felblinger J., Boesch C. Effect of Exercise on the Creatine Resonances in 1H MR Spectra of Human Skeletal Muscle. J. Magn. Reson. 1999;137:350–357. doi: 10.1006/jmre.1998.1683. PubMed DOI
Meyerspeer M., Kemp G.J., Mlynárik V., Krššák M., Szendroedi J., Nowotny P., Roden M., Moser E. Direct Noninvasive Quantification of Lactate and High Energy Phosphates Simultaneously in Exercising Human Skeletal Muscle by Localized Magnetic Resonance Spectroscopy. Magn. Reson. Med. 2007;57:654–660. doi: 10.1002/mrm.21188. PubMed DOI PMC
Niess F., Roat S., Bogner W., Krššák M., Kemp G.J., Schmid A.I., Trattnig S., Moser E., Zaitsev M., Meyerspeer M. 3D Localized Lactate Detection in Muscle Tissue Using Double-Quantum Filtered 1H MRS with Adiabatic Refocusing Pulses at 7T. Magn. Reson. Med. 2022;87:1174–1183. doi: 10.1002/mrm.29061. PubMed DOI
Damon B.M., Gore J.C. Physiological Basis of Muscle Functional MRI: Predictions Using a Computer Model. J. Appl. Physiol. 2005;98:264–273. doi: 10.1152/japplphysiol.00369.2004. PubMed DOI
Dooley K., Snodgrass S.J., Stanwell P., Birse S., Schultz A., Drew M.K., Edwards S. Spatial Muscle Activation Patterns during Different Leg Exercise Protocols in Physically Active Adults Using Muscle Functional MRI: A Systematic Review. J. Appl. Physiol. 2020;129:934–946. doi: 10.1152/japplphysiol.00290.2020. PubMed DOI
Niess F., Schmid A.I., Bogner W., Wolzt M., Carlier P., Trattnig S., Moser E., Meyerspeer M. Interleaved 31P MRS/1H ASL for Analysis of Metabolic and Functional Heterogeneity along Human Lower Leg Muscles at 7T. Magn. Reson. Med. 2020;83:1909–1919. doi: 10.1002/mrm.28088. PubMed DOI PMC
Englund E.K., Langham M.C., Li C., Rodgers Z.B., Floyd T.F., Mohler E.R., Wehrli F.W. Combined Measurement of Perfusion, Venous Oxygen Saturation, and Skeletal Muscle T2* during Reactive Hyperemia in the Leg. J. Cardiovasc. Magn. Reson. 2013;15:70. doi: 10.1186/1532-429X-15-70. PubMed DOI PMC
Damon B.M., Froeling M., Buck A.K.W., Oudeman J., Ding Z., Nederveen A.J., Bush E.C., Strijkers G.J. Skeletal Muscle Diffusion Tensor-MRI Fiber Tracking: Rationale, Data Acquisition and Analysis Methods, Applications and Future Directions. NMR Biomed. 2017;30:e3563. doi: 10.1002/nbm.3563. PubMed DOI PMC
Fouré A., Ogier A.C., Le Troter A., Vilmen C., Feiweier T., Guye M., Gondin J., Besson P., Bendahan D. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability. Radiology. 2018;287:592–607. doi: 10.1148/radiol.2017171330. PubMed DOI
Englund E.K., Elder C.P., Xu Q., Ding Z., Damon B.M. Combined Diffusion and Strain Tensor MRI Reveals a Heterogeneous, Planar Pattern of Strain Development during Isometric Muscle Contraction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R1079–R1090. doi: 10.1152/ajpregu.00474.2010. PubMed DOI PMC
Ladd M.E., Bachert P., Meyerspeer M., Moser E., Nagel A.M., Norris D.G., Schmitter S., Speck O., Straub S., Zaiss M. Pros and Cons of Ultra-High-Field MRI/MRS for Human Application. Prog. Nucl. Magn. Reson. Spectrosc. 2018;109:1–50. doi: 10.1016/j.pnmrs.2018.06.001. PubMed DOI
Choi C.-H., Hong S.-M., Felder J., Shah N.J. The State-of-the-Art and Emerging Design Approaches of Double-Tuned RF Coils for X-Nuclei, Brain MR Imaging and Spectroscopy: A Review. Magn. Reson. Imaging. 2020;72:103–116. doi: 10.1016/j.mri.2020.07.003. PubMed DOI
Isaac G., Schnall M.D., Lenkinski R.E., Vogele K. A Design for a Double-Tuned Birdcage Coil for Use in an Integrated MRI/MRS Examination. J. Magn. Reson. 1990;89:41–50. doi: 10.1016/0022-2364(90)90160-B. DOI
Schnall M.D., Harihara Subramanian V., Leigh J.S., Chance B. A New Double-Tuned Probed for Concurrent 1H and 31P NMR. J. Magn. Reson. 1985;65:122–129. doi: 10.1016/0022-2364(85)90380-4. DOI
Lim H., Thind K., Martinez-Santiesteban F.M., Scholl T.J. Construction and Evaluation of a Switch-tuned 13C-1H Birdcage Radiofrequency Coil for Imaging the Metabolism of Hyperpolarized 13C-enriched Compounds. Magn. Reson. Imaging. 2014;40:1082–1090. doi: 10.1002/jmri.24458. PubMed DOI
Choi C.-H., Hong S.-M., Ha Y., Shah N.J. Design and Construction of a Novel 1H/19F Double-Tuned Coil System Using PIN-Diode Switches at 9.4 T. J. Magn. Reson. 2017;279:11–15. doi: 10.1016/j.jmr.2017.04.005. PubMed DOI
Raaijmakers A.J.E., Italiaander M., Voogt I.J., Luijten P.R., Hoogduin J.M., Klomp D.W.J., Van Den Berg C.A.T. The Fractionated Dipole Antenna: A New Antenna for Body Imaging at 7 Tesla. Magn. Reson. Med. 2016;75:1366–1374. doi: 10.1002/MRM.25596. PubMed DOI
Steensma B.R., Voogt I.J., Leiner T., Luijten P.R., Habets J., Klomp D.W.J., van den Berg C.A.T., Raaijmakers A.J.E. An 8-Channel Tx/Rx Dipole Array Combined with 16 Rx Loops for High-Resolution Functional Cardiac Imaging at 7T. Magn. Reson. Mater. Phys. Biol. Med. 2018;31:7–18. doi: 10.1007/s10334-017-0665-5. PubMed DOI PMC
Avdievich N.I., Solomakha G., Ruhm L., Nikulin A.V., Magill A.W., Scheffler K. Folded-End Dipole Transceiver Array for Human Whole-Brain Imaging at 7T. NMR in Biomed. 2021;34:e4541. doi: 10.1002/nbm.4541. PubMed DOI
Clément J., Gruetter R., Ipek Ö. A Combined 32-channel Receive-loops/8-channel Transmit-dipoles Coil Array for Whole-brain MR Imaging at 7T. Magn. Reson. Med. 2019;82:1229–1241. doi: 10.1002/mrm.27808. PubMed DOI PMC
Avdievich N.I., Nikulin A.V., Ruhm L., Magill A.W., Glang F., Henning A., Scheffler K., Society M.P. A 32-Element Loop/Dipole Hybrid Array for Human Head Imaging at 7T. Magn. Reson. Med. 2022;88:1912–1916. doi: 10.1002/MRM.29347. PubMed DOI
Dai J., Gosselink M., van der Velden T.A., Meliadò E.F., Raaijmakers A.J.E., Klomp D.W.J. An RF Coil Design to Enable Quintuple Nuclear Whole-Brain MRI. Magn. Reson. Med. 2023;89:2131–2141. doi: 10.1002/mrm.29577. PubMed DOI
Ohliger M.A., Sodickson D.K. An Introduction to Coil Array Design for Parallel MRI. NMR Biomed. 2006;19:300–315. doi: 10.1002/nbm.1046. PubMed DOI
Hamilton J., Franson D., Seiberlich N. Recent Advances in Parallel Imaging for MRI. Prog. Nucl. Magn. Reson. Spectrosc. 2017;101:71–95. doi: 10.1016/j.pnmrs.2017.04.002. PubMed DOI PMC
Maravilla J.A., Gopalan K., Arias A.C., Lustig M. Transmission Line Receiver Coils (TLCs) for MRI; Proceedings of the the 30th Scientific Meeting, International Society for Magnetic Resonance in Medicine; London, UK. 7–12 May 2022;
Vliem J., Xiao Y., Wenz D., Xin L., Teeuwise W., Ruytenberg T., Webb A., Zivkovic I. Twisted Pair Transmission Line Coil—A Flexible, Self-Decoupled and Robust Element for 7 T MRI. Magn. Reson. Imaging. 2024;108:146–160. doi: 10.1016/j.mri.2024.02.007. PubMed DOI
Czerny R., Frass-Kriegl R., Cap V., Laistler E., Nohava L. Twisted Pair Coils as Flexible Receive Elements for 7 T-SNR and Active Detuning Efficiency; Proceedings of the 31st Scientific Meeting, International Society for Magnetic Resonance in Medicine; Toronto, ON, Canada. 3–8 June 2023;
Goluch S., Kuehne A., Meyerspeer M., Kriegl R., Schmid A.I., Fiedler G.B., Herrmann T., Mallow J., Hong S.M., Cho Z.H., et al. A Form-Fitted Three Channel 31P, Two Channel 1H Transceiver Coil Array for Calf Muscle Studies at 7T. Magn. Reson. Med. 2015;73:2376–2389. doi: 10.1002/mrm.25339. PubMed DOI
Avdievich N.I., Solomakha G., Ruhm L., Henning A., Scheffler K. Unshielded Bent Folded-End Dipole 9.4 T Human Head Transceiver Array Decoupled Using Modified Passive Dipoles. Magn. Reson. Med. 2021;86:581–597. doi: 10.1002/MRM.28711. PubMed DOI
Sun L., Li Y., Zhang Z., Wang H. Antenna Decoupling by Common and Differential Modes Cancellation. IEEE Trans. Antennas Propag. 2021;69:672–682. doi: 10.1109/TAP.2020.3009427. DOI
Roemer P.B., Edelstein W.A., Hayes C.E., Souza S.P., Mueller M. The NMR Phased Array. Magn. Reson. Med. 1990;16:192–225. doi: 10.1002/mrm.1910160203. PubMed DOI
Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging. ASTM International; West Conshohocken, PA, USA: 2019. DOI
Darrasse L., Kassab G. Quick Measurement of NMR-Coil Sensitivity with a Dual-Loop Probe. Rev. Sci. Instrum. 1993;64:1841–1844. doi: 10.1063/1.1144020. DOI
Ginefri J.-C., Durand E., Darrasse L. Quick Measurement of Nuclear Magnetic Resonance Coil Sensitivity with a Single-Loop Probe. Rev. Sci. Instrum. 1999;70:4730–4731. doi: 10.1063/1.1150142. DOI
Chung S., Kim D., Breton E., Axel L. Rapid B1+ Mapping Using a Preconditioning RF Pulse with TurboFLASH Readout. Magn. Reson. Med. 2010;64:439–446. doi: 10.1002/mrm.22423. PubMed DOI PMC
Robson P.M., Grant A.K., Madhuranthakam A.J., Lattanzi R., Sodickson D.K., McKenzie C.A. Comprehensive Quantification of Signal-to-Noise Ratio and g-Factor for Image-Based and k-Space-Based Parallel Imaging Reconstructions. Magn. Reson. Med. 2008;60:895–907. doi: 10.1002/mrm.21728. PubMed DOI PMC
Breuer F.A., Kannengiesser S.A.R., Blaimer M., Seiberlich N., Jakob P.M., Griswold M.A. General Formulation for Quantitative G-Factor Calculation in GRAPPA Reconstructions. Magn. Reson. Med. 2009;62:739–746. doi: 10.1002/mrm.22066. PubMed DOI
Meyerspeer M., Scheenen T., Schmid A.I., Mandl T., Unger E., Moser E. Semi-LASER Localized Dynamic 31P Magnetic Resonance Spectroscopy in Exercising Muscle at Ultra-High Magnetic Field: Dynamic Semi-LASER Localized 31P MRS in Exercising Muscle. Magn. Reson. Med. 2011;65:1207–1215. doi: 10.1002/mrm.22730. PubMed DOI PMC
Kreis R., Boer V., Choi I., Cudalbu C., De Graaf R.A., Gasparovic C., Heerschap A., Krššák M., Lanz B., Maudsley A.A., et al. Terminology and Concepts for the Characterization of in Vivo MR Spectroscopy Methods and MR Spectra: Background and Experts’ Consensus Recommendations. NMR Biomed. 2021;34:e4347. doi: 10.1002/nbm.4347. PubMed DOI PMC
Christ A., Kainz W., Hahn E., Honegger K., Zefferer M., Neufeld E., Rascher W., Janka R., Bautz W., Chen J., et al. The Virtual Family-Development of Surface-Based Anatomical Models of Two Adults and Two Children for Dosimetric Simulations. Phys. Med. Biol. 2010;55:N23. doi: 10.1088/0031-9155/55/2/N01. PubMed DOI
Kozlov M., Turner R. Fast MRI Coil Analysis Based on 3-D Electromagnetic and RF Circuit Co-Simulation. J. Magn. Reson. 2009;200:147–152. doi: 10.1016/j.jmr.2009.06.005. PubMed DOI
Lemdiasov R.A., Obi A.A., Ludwig R. A Numerical Postprocessing Procedure for Analyzing Radio Frequency MRI Coils. Concepts Magn. Reson. Part A. 2011;38A:133–147. doi: 10.1002/cmr.a.20217. DOI
Graesslin I., Homann H., Biederer S., Börnert P., Nehrke K., Vernickel P., Mens G., Harvey P., Katscher U. A Specific Absorption Rate Prediction Concept for Parallel Transmission MR. Magn. Reson. Med. 2012;68:1664–1674. doi: 10.1002/mrm.24138. PubMed DOI
Kuehne A., Goluch S., Waxmann P., Seifert F., Ittermann B., Moser E., Laistler E. Power Balance and Loss Mechanism Analysis in RF Transmit Coil Arrays. Magn. Reson. Med. 2015;74:1165–1176. doi: 10.1002/MRM.25493. PubMed DOI
Wang W., Sánchez-Heredia J.D., Zhurbenko V., Ardenkjær-Larsen J.H. Condition for Optimal Preamplifier Decoupling in One-Turn Single- and Multi-Gap Shielded Loop MRI Detectors; Proceedings of the 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW); Kharkiv, Ukraine. 14–18 November 2022; pp. 150–154.
Vaughan J.T., Garwood M., Collins C.M., Liu W., DelaBarre L., Adriany G., Andersen P., Merkle H., Goebel R., Smith M.B., et al. 7T vs. 4T: RF Power, Homogeneity, and Signal-to-noise Comparison in Head Images. Magn. Reson. Med. 2001;46:24–30. doi: 10.1002/mrm.1156. PubMed DOI
Collins C.M., Liu W., Schreiber W., Yang Q.X., Smith M.B. Central Brightening Due to Constructive Interference with, without, and despite Dielectric Resonance. Magn. Reson. Imaging. 2005;21:192–196. doi: 10.1002/jmri.20245. PubMed DOI
Meyerspeer M., Roig E.S., Gruetter R., Magill A.W. An Improved Trap Design for Decoupling Multinuclear RF Coils. Magn. Reson. Med. 2014;72:584–590. doi: 10.1002/mrm.24931. PubMed DOI