Phosphorus-Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for 31 P-Magnetic Resonance Imaging
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35246950
DOI
10.1002/mabi.202100523
Knihovny.cz E-zdroje
- Klíčová slova
- 31P-MRI, MRI probes, RAFT polymerization, ROS detection, polymer zwitterions,
- MeSH
- fosfor * metabolismus MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie * metody MeSH
- polymery MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfor * MeSH
- polymery MeSH
31 P-magnetic resonance (MR) is an important diagnostic technique currently used for tissue metabolites assessing, but it also has great potential for visualizing the internal body structures. However, due to the low physiological level of phosphorus-containing biomolecules, precise imaging requires the administration of an exogenous probe. Herein, this work describes the synthesis and MR characterization of a pioneering metal-free 31 P-MR probe based on phosphorus-containing polymeric zwitterion. The developed probe (pTMPC) is a well-defined water-soluble macromolecule characterized by a high content of naturally rare phosphorothioate groups providing a high-intensity 31 P-MR signal clearly distinguishable from biological background both in vitro and in vitro. In addition, pTMPC can serve as a sensitive 31 P-MR sensor of pathological conditions in vivo because it undergoes oxidation-induced structural changes in the presence of reactive oxygen species (ROS). Add to this the favorable 1 H and 31 P T1 /T2 relaxation times and biocompatibility, pTMPC represents a conceptually new diagnostic, whose discovery opens up new possibilities in the field of 31 P-MR spectroscopy and imaging.
1st Faculty of Medicine Charles University Kateřinská 1660 32 Prague 121 08 Czech Republic
Institute for Clinical and Experimental Medicine Vídeňská 1958 9 Prague 140 21 Czech Republic
Institute of Biotechnology Czech Academy of Sciences Průmyslová 595 Vestec 252 50 Czech Republic
Zobrazit více v PubMed
J. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 2019, 119, 957.
R. Hu, D. Kleimaier, M. Malzacher, M. A. U. Hoesl, N. K. Paschke, L. R. Schad, J. Magn. Reson. Imaging 2020, 51, 355.
N. Ziółkowska, M. Vít, R. Laga, D. Jirák, Sci. Rep. 2022, 12, 2118.
A. Santos-Diaz, M. D. Noseworthy, Biomed. Signal Process. Control 2020, 60, 101967.
J. Ren, A. D. Sherry, C. R. Malloy, NMR Biomed. 2015, 28, 1455.
G. J. Kemp, M. Meyerspeer, E. Moser, NMR Biomed. 2007, 20, 555.
E. Terreno, D. D. Castelli, A. Viale, S. Aime, Chem. Rev. 2010, 110, 3019.
H. Li, T. J. Meade, J. Am. Chem. Soc. 2019, 141, 17025.
M.-Y. Lee, D. Choi, M.-S. Jang, J. H. Lee, Bioconjugate Chem. 2018, 29, 2426.
Z. Zhen, J. Xie, Theranostics 2012, 2, 45.
H.e Wei, O. T. Bruns, M. G. Kaul, E. C. Hansen, M. Barch, A. Wiśniowska, O.u Chen, Y. Chen, N. Li, S. Okada, J. M. Cordero, M. Heine, C. T. Farrar, D. M. Montana, G. Adam, H. Ittrich, A. Jasanoff, P. Nielsen, M. G. Bawendi, Proc. Natl. Acad. Sci. USA 2017, 114, 2325.
H. Lee, A. Shahrivarkevishahi, J. L. Lumata, M. A. Luzuriaga, L. M. Hagge, C. E. Benjamin, O. R. Brohlin, C. R. Parish, H. R. Firouzi, S. O. Nielsen, L. L. Lumata, J. J. Gassensmith, Chem. Sci. 2020, 11, 2045.
Z. Pechrova, V. Lobaz, M. Konefał, R. Konefał, M. Hruby, Colloid Interface Sci. Commun. 2021, 42, 100427.
T. Kanda, K. Ishii, H. Kawaguchi, K. Kitajima, D. Takenaka, Radiology 2014, 270, 834.
H. S. Thomsen, S. K. Morcos, T. Almén, M.-F. Bellin, M. Bertolotto, G. Bongartz, O. Clement, P. Leander, G. Heinz-Peer, P. Reimer, F. Stacul, A. Van Der Molen, J. A.w Webb, Eur. Radiol. 2013, 23, 307.
J. J. Petkowski, W. Bains, S. Seager, Molecules 2019, 24, 866.
M. U. Brown, A. Triozzi, T. Emrick, J. Am. Chem. Soc. 2021, 143, 6528.
X. Liu, Z. Tian, C. Chen, H. R. Allcock, Macromolecules 2012, 45, 1417.
H. Henke, S. Wilfert, A. Iturmendi, O. Brüggemann, I. Teasdale, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4467.
S. Guo, X. Xiao, X. Wang, Q. Luo, H. Zhu, H.u Zhang, H. Li, Q. Gong, K. Luo, Biomater. Sci. 2019, 7, 1919.
O. Sedlacek, A. Van Driessche, A. Uvyn, B. G. De Geest, R. Hoogenboom, J. Controlled Release 2020, 326, 53.
M. U. Jin, Y. Q. Zhang, G. Gao, Q. Y. Xi, Y. Yang, L. M. Yan, H. Zhou, Y. X. Zhao, C. Q. Wu, L. D. Wang, Y. Q. Lei, W. Yang, J. W. Xu, Macromol. Rapid Commun. 2018, 39, 1800258.
I. Ekladious, Y. L. Colson, M. W. Grinstaff, Nat. Rev. Drug Discovery 2019, 18, 273.
N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Nano-Micro Lett. 2020, 12, 15.
N. V. Vorobjeva, B. V. Chernyak, Biochemistry (Moscow) 2020, 85, 1178.
J. Liu, Y. Li, S. Chen, Y. Lin, H. Lai, B. Chen, T. Chen, Front. Chem. 2020, 8, 838.
Y. Liu, Y. Gu, X. Yu, Quant. Imaging Med. Surg. 2017, 7, 707.
M. E. Fox, F. C. Szoka, J. M. J. Fréchet, Acc. Chem. Res. 2009, 42, 1141.
M. Meyerspeer, C. Boesch, D. Cameron, M. Dezortová, S. C. Forbes, A. Heerschap, J. A. L. Jeneson, H. E. Kan, J. Kent, G. Layec, J. J. Prompers, H. Reyngoudt, A. Sleigh, L. Valkovič, G. J. Kemp, C. Baligand, P. G. Carlier, B. Chatel, B. Damon, L. Heskamp, M. Hájek, M. Jooijmans, M. Krssak, J. Reichenbach, A. Schmid, J. Slade, K. Vandenborne, G. A. Walter, D. Willis, NMR in Biomedicine 2021, 34, e4246.
E. R. Andrew, R. Gaspar, Biol. Med. 1994, 2, 421.
T. Wu, Q. Huang, X.-L. Wang, T. Shi, L. Bai, J. Liang, Z. Wang, Z. Deng, Y.i-L. Zhao, Sci. Rep. 2017, 7, 42823.
N. Bhuchar, Z. Deng, K. Ishihara, R. Narain, Polym. Chem. 2011, 2, 632.
K. Jarkovska, B. Dvorankova, P. Halada, O. Kodet, P. Szabo, S. J. Gadher, J. Motlik, H. Kovarova, K. Smetana, Jr., Biol. Cell 2014, 106, 203.
Cationic fluorinated micelles for cell labeling and 19F-MR imaging
Phosphorus-Containing Polymers as Sensitive Biocompatible Probes for 31P Magnetic Resonance