-
Something wrong with this record ?
A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research
Schwarz D, Kasparek T, Provaznik I, Jarkovsky J
Language English Country United States
Document type Evaluation Study
- MeSH
- Algorithms MeSH
- Financing, Organized MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Models, Neurological MeSH
- Brain anatomy & histology physiology MeSH
- Neuroanatomy methods MeSH
- Neurology methods MeSH
- Computer Simulation MeSH
- Elasticity MeSH
- Psychiatry methods MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Sensitivity and Specificity MeSH
- Subtraction Technique MeSH
- Artificial Intelligence MeSH
- Image Enhancement methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Evaluation Study MeSH
Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching magnetic resonance imaging (MRI) brain image data obtained from various subjects and with various imaging conditions are solved here. Registration is driven by local forces derived from multimodal point similarity measures which are estimated with the use of joint intensity histogram and tissue probability maps. A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc07527813
- 003
- CZ-PrNML
- 005
- 20130508151621.0
- 008
- 090825s2007 xxu e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Schwarz, Daniel, $d 1977- $7 ola2002146812
- 245 12
- $a A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research / $c Schwarz D, Kasparek T, Provaznik I, Jarkovsky J
- 314 __
- $a Masaryk University, Institute of Biostatistics and Analyses, 625 00 Brno, Czech Republic. schwarz@iba.muni.cz
- 520 9_
- $a Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching magnetic resonance imaging (MRI) brain image data obtained from various subjects and with various imaging conditions are solved here. Registration is driven by local forces derived from multimodal point similarity measures which are estimated with the use of joint intensity histogram and tissue probability maps. A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a mozek $x anatomie a histologie $x fyziologie $7 D001921
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a pružnost $7 D004548
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a neuroanatomie $x metody $7 D009445
- 650 _2
- $a neurologie $x metody $7 D009462
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a psychiatrie $x metody $7 D011570
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a subtrakční technika $7 D013382
- 655 _2
- $a hodnotící studie $7 D023362
- 700 1_
- $a Kašpárek, Tomáš, $d 1975- $7 xx0031812
- 700 1_
- $a Provazník, Ivo, $d 1968- $7 mzk2002106297
- 700 1_
- $a Jarkovský, Jiří $7 stk2008461294
- 773 0_
- $w MED00002174 $t IEEE transactions on medical imaging $g Roč. 26, č. 4 (2007), s. 452-461 $x 0278-0062
- 910 __
- $a ABA008 $b x $y 9
- 990 __
- $a 20090824163150 $b ABA008
- 991 __
- $a 20130508151935 $b ABA008
- 999 __
- $a ok $b bmc $g 672843 $s 532088
- BAS __
- $a 3
- BMC __
- $a 2007 $b 26 $c 4 $d 452-461 $i 0278-0062 $m IEEE transactions on medical imaging $x MED00002174
- LZP __
- $a 2009-B4/vtme