• Something wrong with this record ?

A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research

Schwarz D, Kasparek T, Provaznik I, Jarkovsky J

. 2007 ; 26 (4) : 452-461.

Language English Country United States

Document type Evaluation Study

Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching magnetic resonance imaging (MRI) brain image data obtained from various subjects and with various imaging conditions are solved here. Registration is driven by local forces derived from multimodal point similarity measures which are estimated with the use of joint intensity histogram and tissue probability maps. A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.

000      
00000naa 2200000 a 4500
001      
bmc07527813
003      
CZ-PrNML
005      
20130508151621.0
008      
090825s2007 xxu e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Schwarz, Daniel, $d 1977- $7 ola2002146812
245    12
$a A deformable registration method for automated morphometry of MRI brain images in neuropsychiatric research / $c Schwarz D, Kasparek T, Provaznik I, Jarkovsky J
314    __
$a Masaryk University, Institute of Biostatistics and Analyses, 625 00 Brno, Czech Republic. schwarz@iba.muni.cz
520    9_
$a Image registration methods play a crucial role in computational neuroanatomy. This paper mainly contributes to the field of image registration with the use of nonlinear spatial transformations. Particularly, problems connected to matching magnetic resonance imaging (MRI) brain image data obtained from various subjects and with various imaging conditions are solved here. Registration is driven by local forces derived from multimodal point similarity measures which are estimated with the use of joint intensity histogram and tissue probability maps. A spatial deformation model imitating principles of continuum mechanics is used. Five similarity measures are tested in an experiment with image data obtained from the Simulated Brain Database and a quantitative evaluation of the algorithm is presented. Results of application of the method in automated spatial detection of anatomical abnormalities in first-episode schizophrenia are presented.
650    _2
$a financování organizované $7 D005381
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a mozek $x anatomie a histologie $x fyziologie $7 D001921
650    _2
$a počítačová simulace $7 D003198
650    _2
$a pružnost $7 D004548
650    _2
$a lidé $7 D006801
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a modely neurologické $7 D008959
650    _2
$a neuroanatomie $x metody $7 D009445
650    _2
$a neurologie $x metody $7 D009462
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a psychiatrie $x metody $7 D011570
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a subtrakční technika $7 D013382
655    _2
$a hodnotící studie $7 D023362
700    1_
$a Kašpárek, Tomáš, $d 1975- $7 xx0031812
700    1_
$a Provazník, Ivo, $d 1968- $7 mzk2002106297
700    1_
$a Jarkovský, Jiří $7 stk2008461294
773    0_
$w MED00002174 $t IEEE transactions on medical imaging $g Roč. 26, č. 4 (2007), s. 452-461 $x 0278-0062
910    __
$a ABA008 $b x $y 9
990    __
$a 20090824163150 $b ABA008
991    __
$a 20130508151935 $b ABA008
999    __
$a ok $b bmc $g 672843 $s 532088
BAS    __
$a 3
BMC    __
$a 2007 $b 26 $c 4 $d 452-461 $i 0278-0062 $m IEEE transactions on medical imaging $x MED00002174
LZP    __
$a 2009-B4/vtme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...