Influence of Chain Length of Gradient and Block Copoly(2-oxazoline)s on Self-Assembly and Drug Encapsulation
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35212458
DOI
10.1002/smll.202106251
Knihovny.cz E-zdroje
- Klíčová slova
- gradient copolymers, nanomedicine, poly(2-oxazoline)s, self-assembly,
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- kurkumin * chemie MeSH
- micely * MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kurkumin * MeSH
- micely * MeSH
- nosiče léků MeSH
- polymery MeSH
Amphiphilic gradient copolymers represent a promising alternative to extensively used block copolymers due to their facile one-step synthesis by statistical copolymerization of monomers of different reactivity. Herein, an in-depth analysis is provided of micelles based on amphiphilic gradient poly(2-oxazoline)s with different chain lengths to evaluate their potential for micellar drug delivery systems and compare them to the analogous diblock copolymer micelles. Size, morphology, and stability of self-assembled nanoparticles, loading of hydrophobic drug curcumin, as well as cytotoxicities of the prepared nanoformulations are examined using copoly(2-oxazoline)s with varying chain lengths and comonomer ratios. In addition to several interesting differences between the two copolymer architecture classes, such as more compact self-assembled structures with faster exchange dynamics for the gradient copolymers, it is concluded that gradient copolymers provide stable curcumin nanoformulations with comparable drug loadings to block copolymer systems and benefit from more straightforward copolymer synthesis. The study demonstrates the potential of amphiphilic gradient copolymers as a versatile platform for the synthesis of new polymer therapeutics.
Department of Chemistry Ångström Laboratory Uppsala University Lägerhyddsvägen 1 Uppsala Sweden
School of Pharmacy University of Reading Whiteknights Reading RG6 6DX UK
Tampere University of Technology Korkeakoulunkatu 7 Tampere 33720 Finland
Zobrazit více v PubMed
S. Tonge, B. Tighe, Adv. Drug Delivery Rev. 2001, 53, 109.
S. Garnier, A. Laschewsky, Langmuir 2006, 22, 4044.
K. Letchford, H. Burt, Eur. J. Pharm. Biopharm. 2007, 65, 259.
I. F. Uchegbu, S. P. Vyas, Int. J. Pharm. 1998, 172, 33.
Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
A. Blanazs, S. P. Armes, A. J. Ryan, Macromol. Rapid Commun. 2009, 30, 267.
K. Nakashima, P. Bahadur, Adv. Colloid Interface Sci. 2006, 123, 75.
K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Delivery Rev. 2012, 64, 37.
J. I. Hare, T. Lammers, M. B. Ashford, S. Puri, G. Storm, S. T. Barry, Adv. Drug Delivery Rev. 2017, 108, 25.
Y. Chen, H. Chen, M. Feng, Y. Dong, Eur. Polym. J. 2016, 85, 489.
M. M. Alam, K. S. Jack, D. J. Hill, A. K. Whittaker, H. Peng, Eur. Polym. J. 2019, 116, 394.
Z. Deng, Q. Shi, J. Tan, J. Hu, S. Liu, ACS Mater. Lett. 2021, 3, 1339.
J. Zhang, B. Farias-Mancilla, M. Destarac, U. S. Schubert, D. J. Keddie, C. Guerrero-Sanchez, S. Harrisson, Macromol. Rapid Commun. 2018, 39, 1800357.
R. Yañez-Macias, I. Kulai, J. Ulbrich, T. Yildirim, P. Sungur, S. Hoeppener, R. Guerrero-Santos, U. S. Schubert, M. Destarac, C. Guerrero-Sanchez, Polym. Chem. 2017, 8, 5023.
S. Agarwal, Polym. Chem. 2010, 1, 953.
T. Gleede, E. Rieger, J. Blankenburg, K. Klein, F. R. Wurm, J. Am. Chem. Soc. 2018, 140, 13407.
T. Gleede, J. C. Markwart, N. Huber, E. Rieger, F. R. Wurm, Macromolecules 2019, 52, 9703.
E. Galanos, E. Grune, C. Wahlen, A. H. Müller, M. Appold, M. Gallei, H. Frey, G. Floudas, Macromolecules 2019, 52, 1577.
S. K. Filippov, B. Verbraeken, P. V. Konarev, D. I. Svergun, B. Angelov, N. S. Vishnevetskaya, C. M. Papadakis, S. Rogers, A. Radulescu, T. Courtin, J. C. Martins, L. Starovoytova, M. Hruby, P. Stepanek, V. S. Kravchenko, I. I. Potemkin, R. Hoogenboom, J. Phys. Chem. Lett. 2017, 8, 3800.
H. M. Lambermont-Thijs, M. J. Jochems, R. Hoogenboom, U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6433.
R. Hoogenboom, M. W. Fijten, S. Wijnans, A. M. van den Berg, H. M. Thijs, U. S. Schubert, J. Comb. Chem. 2006, 8, 145.
O. Sedlacek, K. Lava, B. Verbraeken, S. Kasmi, B. G. De Geest, R. Hoogenboom, J. Am. Chem. Soc. 2019, 141, 9617.
P. H. Van Steenberge, B. Verbraeken, M.-F. o. Reyniers, R. Hoogenboom, D. R. D'hooge, Macromolecules 2015, 48, 7765.
D. Bera, O. Sedlacek, E. Jager, E. Pavlova, M. Vergaelen, R. Hoogenboom, Polym. Chem. 2019, 10, 5116.
R. Hoogenboom, Angew. Chem., Int. Ed. 2009, 48, 7978.
H. Schlaad, C. Diehl, A. Gress, M. Meyer, A. L. Demirel, Y. Nur, A. Bertin, Macromol. Rapid Commun. 2010, 31, 511.
T. Lorson, M. M. Lübtow, E. Wegener, M. S. Haider, S. Borova, D. Nahm, R. Jordan, M. Sokolski-Papkov, A. V. Kabanov, R. Luxenhofer, Biomaterials 2018, 178, 204.
B. Verbraeken, B. Monnery, K. Lava, R. Hoogenboom, Eur. Polym. J. 2017, 88, 451.
M. Glassner, M. Vergaelen, R. Hoogenboom, Polym. Int. 2018, 67, 32.
G. Morgese, B. Verbraeken, S. N. Ramakrishna, Y. Gombert, E. Cavalli, J. G. Rosenboom, M. Zenobi-Wong, N. D. Spencer, R. Hoogenboom, E. M. Benetti, Angew. Chem., Int. Ed. 2018, 57, 11667.
O. Sedlacek, R. Hoogenboom, Adv. Ther. 2020, 3, 1900168.
O. Sedlacek, A. Van Driessche, A. Uvyn, B. G. De Geest, R. Hoogenboom, J. Controlled Release 2020, 326, 53.
R. Luxenhofer, A. Schulz, C. Roques, S. Li, T. K. Bronich, E. V. Batrakova, R. Jordan, A. V. Kabanov, Biomaterials 2010, 31, 4972.
Z. He, A. Schulz, X. Wan, J. Seitz, H. Bludau, D. Y. Alakhova, D. B. Darr, C. M. Perou, R. Jordan, I. Ojima, J. Controlled Release 2015, 208, 67.
M. M. Lübtow, L. Hahn, M. S. Haider, R. Luxenhofer, J. Am. Chem. Soc. 2017, 139, 10980.
Z. He, X. Wan, A. Schulz, H. Bludau, M. A. Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, M. Sokolsky, D. B. Darr, C. M. Perou, R. Jordan, R. Luxenhofer, A. V. Kabanov, Biomaterials 2016, 101, 296.
X. Wan, J. J. Beaudoin, N. Vinod, Y. Min, N. Makita, H. Bludau, R. Jordan, A. Wang, M. Sokolsky, A. V. Kabanov, Biomaterials 2019, 192, 1.
V. S. Kravchenko, I. I. Potemkin, J. Phys. Chem. B 2016, 120, 12211.
S. Datta, A. Jutková, P. Šrámková, L. Lenkavská, V. Huntošová, D. Chorvát, P. Miškovský, D. Jancura, J. Kronek, Biomacromolecules 2018, 19, 2459.
L. Loukotová, P. Švec, O. Groborz, T. Heizer, H. Beneš, H. Raabová, T. Bělinová, V. Herynek, M. Hrubý, Macromolecules 2021, 54, 8182.
R. Lund, L. Willner, J. Stellbrink, A. Radulescu, D. Richter, Macromolecules 2004, 37, 9984.
H. Cabral, K. Miyata, K. Osada, K. Kataoka, Chem. Rev. 2018, 118, 6844.
L. G. Chen, H. Bermudez, Langmuir 2012, 28, 1157.
K. Florey, Analytical Profiles of Drug Substances, Vol. 5. Elsevier Science & Technology, Amsterdam, Netherlands 1976.
K. Suresh, A. Nangia, CrystEngComm 2018, 20, 3277.
Z. He, X. Wan, A. Schulz, H. Bludau, M. A. Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, Biomaterials 2016, 101, 296.
M. M. Lübtow, M. S. Haider, M. Kirsch, S. Klisch, R. Luxenhofer, Biomacromolecules 2019, 20, 3041.
J. Liu, H. Lee, C. Allen, Curr. Pharm. Des. 2006, 12, 4685.