Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39558644
PubMed Central
PMC11632659
DOI
10.1021/acs.biomac.4c00915
Knihovny.cz E-zdroje
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- kontrastní látky chemie chemická syntéza MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- methakryláty * chemie MeSH
- nádorové buněčné linie MeSH
- nanočástice chemie MeSH
- polyethylenglykoly * chemie MeSH
- polymerizace MeSH
- polymery chemie chemická syntéza MeSH
- zobrazování fluorovou magnetickou rezonancí metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kontrastní látky MeSH
- methakryláty * MeSH
- polyethylene glycol methacrylate MeSH Prohlížeč
- polyethylenglykoly * MeSH
- polymery MeSH
Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.
Zobrazit více v PubMed
Delaittre G.; Nicolas J.; Lefay C.; Save M.; Charleux B. Surfactant-Free Synthesis of Amphiphilic Diblock Copolymer Nanoparticles via Nitroxide-Mediated Emulsion Polymerization. Chem. Commun. 2005, 5 (5), 614–616. 10.1039/b415959d. PubMed DOI
Warren N. J.; Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136 (29), 10174–10185. 10.1021/ja502843f. PubMed DOI PMC
Penfold N. J. W.; Yeow J.; Boyer C.; Armes S. P. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8 (8), 1029–1054. 10.1021/acsmacrolett.9b00464. PubMed DOI
Van Steenberge P. H. M.; D’hooge D. R.; Wang Y.; Zhong M.; Reyniers M.-F.; Konkolewicz D.; Matyjaszewski K.; Marin G. B. Linear Gradient Quality of ATRP Copolymers. Macromolecules 2012, 45 (21), 8519–8531. 10.1021/ma3017597. DOI
Alam M. M.; Jack K. S.; Hill D. J. T.; Whittaker A. K.; Peng H. Gradient Copolymers – Preparation, Properties and Practice. Eur. Polym. J. 2019, 116, 394–414. 10.1016/j.eurpolymj.2019.04.028. DOI
Sedlacek O.; Bardoula V.; Vuorimaa-Laukkanen E.; Gedda L.; Edwards K.; Radulescu A.; Mun G. A.; Guo Y.; Zhou J.; Zhang H.; Nardello-Rataj V.; Filippov S.; Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly(2-Oxazoline)s on Self-Assembly and Drug Encapsulation. Small 2022, 18 (17), 2106251.10.1002/smll.202106251. PubMed DOI
Shin S.; Gu M.-L.; Yu C.-Y.; Jeon J.; Lee E.; Choi T.-L. Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure. J. Am. Chem. Soc. 2018, 140 (1), 475–482. 10.1021/jacs.7b11630. PubMed DOI
Li C.; Zhao W.; He J.; Zhang Y.; Zhang W. Single-Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization-Induced Self-Assembly. Angew. Chem. 2022, 134 (24), e20220244810.1002/ange.202202448. PubMed DOI
Xu S.; Zhang T.; Kuchel R. P.; Yeow J.; Boyer C. Gradient Polymerization–Induced Self-Assembly: A One-Step Approach. Macromol. Rapid Commun. 2020, 41 (1), 1900493.10.1002/marc.201900493. PubMed DOI
Tirotta I.; Dichiarante V.; Pigliacelli C.; Cavallo G.; Terraneo G.; Bombelli F. B.; Metrangolo P.; Resnati G. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem. Rev. 2015, 115 (2), 1106–1129. 10.1021/cr500286d. PubMed DOI
Mo Y.; Huang C.; Liu C.; Duan Z.; Liu J.; Wu D. Recent Research Progress of 19F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol. Rapid Commun. 2023, 44 (16), 2200744.10.1002/marc.202200744. PubMed DOI
Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional Polymers as Metal-Free Magnetic Resonance Imaging Contrast Agents. Prog. Polym. Sci. 2020, 108, 101286.10.1016/j.progpolymsci.2020.101286. DOI
Jirak D.; Galisova A.; Kolouchova K.; Babuka D.; Hruby M. Fluorine Polymer Probes for Magnetic Resonance Imaging: Quo Vadis?. Magn Reson Mater. Phy 2019, 32 (1), 173–185. 10.1007/s10334-018-0724-6. PubMed DOI PMC
Feng Z.; Li Q.; Wang W.; Ni Q.; Wang Y.; Song H.; Zhang C.; Kong D.; Liang X.-J.; Huang P. Superhydrophilic Fluorinated Polymer and Nanogel for High-Performance 19F Magnetic Resonance Imaging. Biomaterials 2020, 256, 120184.10.1016/j.biomaterials.2020.120184. PubMed DOI
Zhang C.; Moonshi S. S.; Han Y.; Puttick S.; Peng H.; Magoling B. J. A.; Reid J. C.; Bernardi S.; Searles D. J.; Král P.; Whittaker A. K. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017, 50 (15), 5953–5963. 10.1021/acs.macromol.7b01285. DOI
Havlicek D.; Panakkal V. M.; Voska L.; Sedlacek O.; Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol. Biosci. 2024, 24 (6), 2300510.10.1002/mabi.202300510. PubMed DOI
Zhao W.; Ta H. T.; Zhang C.; Whittaker A. K. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-Objects for Cell Uptake and Tracking. Biomacromolecules 2017, 18 (4), 1145–1156. 10.1021/acs.biomac.6b01788. PubMed DOI
Panakkal V. M.; Havlicek D.; Pavlova E.; Filipová M.; Bener S.; Jirak D.; Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)Acrylamide in Water. Biomacromolecules 2022, 23 (11), 4814–4824. 10.1021/acs.biomac.2c00981. PubMed DOI PMC
Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H. Thermoresponsive Fluorinated Polyacrylamides with Low Cytotoxicity. Polym. Chem. 2013, 4 (7), 2219–2223. 10.1039/C2PY20747H. DOI
Meyer V. E.; Lowry G. G. Integral and Differential Binary Copolymerization Equations. J. Polym. Sci., Part A: Gen. Pap. 1965, 3 (8), 2843–2851. 10.1002/pol.1965.100030811. DOI
Skeist I. Copolymerization: The Composition Distribution Curve. J. Am. Chem. Soc. 1946, 68 (9), 1781–1784. 10.1021/ja01213a031. PubMed DOI
Yu S.; Dai G.; Wang Z.; Li L.; Wei X.; Xie Y. A Consistency Evaluation of Signal-to-Noise Ratio in the Quality Assessment of Human Brain Magnetic Resonance Images. BMC Med. Imaging 2018, 18, 17.10.1186/s12880-018-0256-6. PubMed DOI PMC
Moad G.; Rizzardo E.; Thang S. H. Living Radical Polymerization by the RAFT Process—A First Update. Aust. J. Chem. 2006, 59 (10), 669–692. 10.1071/CH06250. DOI
Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC
Mai Y.; Eisenberg A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41 (18), 5969–5985. 10.1039/c2cs35115c. PubMed DOI
Lansalot M.; Rieger J.; D’Agosto F.. Polymerization-Induced Self-Assembly: The Contribution of Controlled Radical Polymerization to The Formation of Self-Stabilized Polymer Particles of Various Morphologies. In Macromolecular Self-assembly; John Wiley & Sons, Ltd, 2016; pp 33–82.10.1002/9781118887813.ch2. DOI
Beckingham B. S.; Sanoja G. E.; Lynd N. A. Simple and Accurate Determination of Reactivity Ratios Using a Nonterminal Model of Chain Copolymerization. Macromolecules 2015, 48 (19), 6922–6930. 10.1021/acs.macromol.5b01631. DOI
Van Steenberge P. H. M.; Verbraeken B.; Reyniers M.-F.; Hoogenboom R.; D’hooge D. R. Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-Oxazoline)s On the Basis of 2-Methyl-2-Oxazoline and 2-Phenyl-2-Oxazoline. Macromolecules 2015, 48 (21), 7765–7773. 10.1021/acs.macromol.5b01642. DOI
Rheinberger T.; Flögel U.; Koshkina O.; Wurm F. R. Real-Time 31P NMR Reveals Different Gradient Strengths in Polyphosphoester Copolymers as Potential MRI-Traceable Nanomaterials. Commun. Chem. 2023, 6 (1), 1–11. 10.1038/s42004-023-00954-x. PubMed DOI PMC
Idowu L. A.; Hutchinson R. A. Solvent Effects on Radical Copolymerization Kinetics of 2-Hydroxyethyl Methacrylate and Butyl Methacrylate. Polymers 2019, 11 (3), 487.10.3390/polym11030487. PubMed DOI PMC
Valdebenito A.; Encinas M. V. Effect of Solvent on the Free Radical Polymerization of N,N-dimethylacrylamide. Polym. Int. 2010, 59 (9), 1246–1251. 10.1002/pi.2856. DOI
Figg C. A.; Carmean R. N.; Bentz K. C.; Mukherjee S.; Savin D. A.; Sumerlin B. S. Tuning Hydrophobicity To Program Block Copolymer Assemblies from the Inside Out. Macromolecules 2017, 50 (3), 935–943. 10.1021/acs.macromol.6b02754. DOI
Wang Y.; Tan X.; Usman A.; Zhang Y.; Sawczyk M.; Král P.; Zhang C.; Whittaker A. K. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett. 2022, 11 (10), 1195–1201. 10.1021/acsmacrolett.2c00414. PubMed DOI
Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated Water-Soluble Poly(2-Oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020, 53 (15), 6387–6395. 10.1021/acs.macromol.0c01228. DOI
Koshkina O.; Rheinberger T.; Flocke V.; Windfelder A.; Bouvain P.; Hamelmann N. M.; Paulusse J. M.; Gojzewski H.; Flögel U.; Wurm F. R. Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers. Nat. Commun. 2023, 14 (1), 4351.10.1038/s41467-023-40089-0. PubMed DOI PMC
Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly(2-Oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-Oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22 (7), 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI
Ruiz-Cabello J.; Barnett B. P.; Bottomley P. A.; Bulte J. W. M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 2011, 24, 114–129. 10.1002/nbm.1570. PubMed DOI PMC