Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly

. 2024 Dec 09 ; 25 (12) : 7685-7694. [epub] 20241118

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39558644

Amphiphilic gradient copolymers are promising alternatives to block copolymers for self-assembled nanomaterials due to their straightforward synthesis via statistical copolymerization of monomers with different reactivities and hydrophilicity. By carefully selecting monomers, nanoparticles can be synthesized in a single step through gradient copolymerization-induced self-assembly (gPISA). We synthesized highly sensitive 19F MRI nanotracers via aqueous dispersion gPISA of hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) with core-forming N,N-(2,2,2-trifluoroethyl)acrylamide (TFEAM). The PPEGMA-grad-PTFEAM nanoparticles were optimized to achieve spherical morphology and exceptional 19F MRI performance. Noncytotoxicity was confirmed in Panc-1 cells. In vitro 19F MR relaxometry and imaging demonstrated their diagnostic imaging potential. Notably, these gradient copolymer nanotracers outperformed block copolymer analogs in 19F MRI performance due to their gradient architecture, enhancing 19F relaxivity. The synthetic versatility and superior 19F MRI performance of gradient copolymers highlight their potential in advanced diagnostic imaging applications.

Zobrazit více v PubMed

Delaittre G.; Nicolas J.; Lefay C.; Save M.; Charleux B. Surfactant-Free Synthesis of Amphiphilic Diblock Copolymer Nanoparticles via Nitroxide-Mediated Emulsion Polymerization. Chem. Commun. 2005, 5 (5), 614–616. 10.1039/b415959d. PubMed DOI

Warren N. J.; Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136 (29), 10174–10185. 10.1021/ja502843f. PubMed DOI PMC

Penfold N. J. W.; Yeow J.; Boyer C.; Armes S. P. Emerging Trends in Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8 (8), 1029–1054. 10.1021/acsmacrolett.9b00464. PubMed DOI

Van Steenberge P. H. M.; D’hooge D. R.; Wang Y.; Zhong M.; Reyniers M.-F.; Konkolewicz D.; Matyjaszewski K.; Marin G. B. Linear Gradient Quality of ATRP Copolymers. Macromolecules 2012, 45 (21), 8519–8531. 10.1021/ma3017597. DOI

Alam M. M.; Jack K. S.; Hill D. J. T.; Whittaker A. K.; Peng H. Gradient Copolymers – Preparation, Properties and Practice. Eur. Polym. J. 2019, 116, 394–414. 10.1016/j.eurpolymj.2019.04.028. DOI

Sedlacek O.; Bardoula V.; Vuorimaa-Laukkanen E.; Gedda L.; Edwards K.; Radulescu A.; Mun G. A.; Guo Y.; Zhou J.; Zhang H.; Nardello-Rataj V.; Filippov S.; Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly(2-Oxazoline)s on Self-Assembly and Drug Encapsulation. Small 2022, 18 (17), 2106251.10.1002/smll.202106251. PubMed DOI

Shin S.; Gu M.-L.; Yu C.-Y.; Jeon J.; Lee E.; Choi T.-L. Polymer Self-Assembly into Unique Fractal Nanostructures in Solution by a One-Shot Synthetic Procedure. J. Am. Chem. Soc. 2018, 140 (1), 475–482. 10.1021/jacs.7b11630. PubMed DOI

Li C.; Zhao W.; He J.; Zhang Y.; Zhang W. Single-Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization-Induced Self-Assembly. Angew. Chem. 2022, 134 (24), e20220244810.1002/ange.202202448. PubMed DOI

Xu S.; Zhang T.; Kuchel R. P.; Yeow J.; Boyer C. Gradient Polymerization–Induced Self-Assembly: A One-Step Approach. Macromol. Rapid Commun. 2020, 41 (1), 1900493.10.1002/marc.201900493. PubMed DOI

Tirotta I.; Dichiarante V.; Pigliacelli C.; Cavallo G.; Terraneo G.; Bombelli F. B.; Metrangolo P.; Resnati G. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem. Rev. 2015, 115 (2), 1106–1129. 10.1021/cr500286d. PubMed DOI

Mo Y.; Huang C.; Liu C.; Duan Z.; Liu J.; Wu D. Recent Research Progress of 19F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol. Rapid Commun. 2023, 44 (16), 2200744.10.1002/marc.202200744. PubMed DOI

Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional Polymers as Metal-Free Magnetic Resonance Imaging Contrast Agents. Prog. Polym. Sci. 2020, 108, 101286.10.1016/j.progpolymsci.2020.101286. DOI

Jirak D.; Galisova A.; Kolouchova K.; Babuka D.; Hruby M. Fluorine Polymer Probes for Magnetic Resonance Imaging: Quo Vadis?. Magn Reson Mater. Phy 2019, 32 (1), 173–185. 10.1007/s10334-018-0724-6. PubMed DOI PMC

Feng Z.; Li Q.; Wang W.; Ni Q.; Wang Y.; Song H.; Zhang C.; Kong D.; Liang X.-J.; Huang P. Superhydrophilic Fluorinated Polymer and Nanogel for High-Performance 19F Magnetic Resonance Imaging. Biomaterials 2020, 256, 120184.10.1016/j.biomaterials.2020.120184. PubMed DOI

Zhang C.; Moonshi S. S.; Han Y.; Puttick S.; Peng H.; Magoling B. J. A.; Reid J. C.; Bernardi S.; Searles D. J.; Král P.; Whittaker A. K. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017, 50 (15), 5953–5963. 10.1021/acs.macromol.7b01285. DOI

Havlicek D.; Panakkal V. M.; Voska L.; Sedlacek O.; Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol. Biosci. 2024, 24 (6), 2300510.10.1002/mabi.202300510. PubMed DOI

Zhao W.; Ta H. T.; Zhang C.; Whittaker A. K. Polymerization-Induced Self-Assembly (PISA) - Control over the Morphology of 19F-Containing Polymeric Nano-Objects for Cell Uptake and Tracking. Biomacromolecules 2017, 18 (4), 1145–1156. 10.1021/acs.biomac.6b01788. PubMed DOI

Panakkal V. M.; Havlicek D.; Pavlova E.; Filipová M.; Bener S.; Jirak D.; Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)Acrylamide in Water. Biomacromolecules 2022, 23 (11), 4814–4824. 10.1021/acs.biomac.2c00981. PubMed DOI PMC

Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H. Thermoresponsive Fluorinated Polyacrylamides with Low Cytotoxicity. Polym. Chem. 2013, 4 (7), 2219–2223. 10.1039/C2PY20747H. DOI

Meyer V. E.; Lowry G. G. Integral and Differential Binary Copolymerization Equations. J. Polym. Sci., Part A: Gen. Pap. 1965, 3 (8), 2843–2851. 10.1002/pol.1965.100030811. DOI

Skeist I. Copolymerization: The Composition Distribution Curve. J. Am. Chem. Soc. 1946, 68 (9), 1781–1784. 10.1021/ja01213a031. PubMed DOI

Yu S.; Dai G.; Wang Z.; Li L.; Wei X.; Xie Y. A Consistency Evaluation of Signal-to-Noise Ratio in the Quality Assessment of Human Brain Magnetic Resonance Images. BMC Med. Imaging 2018, 18, 17.10.1186/s12880-018-0256-6. PubMed DOI PMC

Moad G.; Rizzardo E.; Thang S. H. Living Radical Polymerization by the RAFT Process—A First Update. Aust. J. Chem. 2006, 59 (10), 669–692. 10.1071/CH06250. DOI

Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC

Mai Y.; Eisenberg A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41 (18), 5969–5985. 10.1039/c2cs35115c. PubMed DOI

Lansalot M.; Rieger J.; D’Agosto F.. Polymerization-Induced Self-Assembly: The Contribution of Controlled Radical Polymerization to The Formation of Self-Stabilized Polymer Particles of Various Morphologies. In Macromolecular Self-assembly; John Wiley & Sons, Ltd, 2016; pp 33–82.10.1002/9781118887813.ch2. DOI

Beckingham B. S.; Sanoja G. E.; Lynd N. A. Simple and Accurate Determination of Reactivity Ratios Using a Nonterminal Model of Chain Copolymerization. Macromolecules 2015, 48 (19), 6922–6930. 10.1021/acs.macromol.5b01631. DOI

Van Steenberge P. H. M.; Verbraeken B.; Reyniers M.-F.; Hoogenboom R.; D’hooge D. R. Model-Based Visualization and Understanding of Monomer Sequence Formation in Gradient Copoly(2-Oxazoline)s On the Basis of 2-Methyl-2-Oxazoline and 2-Phenyl-2-Oxazoline. Macromolecules 2015, 48 (21), 7765–7773. 10.1021/acs.macromol.5b01642. DOI

Rheinberger T.; Flögel U.; Koshkina O.; Wurm F. R. Real-Time 31P NMR Reveals Different Gradient Strengths in Polyphosphoester Copolymers as Potential MRI-Traceable Nanomaterials. Commun. Chem. 2023, 6 (1), 1–11. 10.1038/s42004-023-00954-x. PubMed DOI PMC

Idowu L. A.; Hutchinson R. A. Solvent Effects on Radical Copolymerization Kinetics of 2-Hydroxyethyl Methacrylate and Butyl Methacrylate. Polymers 2019, 11 (3), 487.10.3390/polym11030487. PubMed DOI PMC

Valdebenito A.; Encinas M. V. Effect of Solvent on the Free Radical Polymerization of N,N-dimethylacrylamide. Polym. Int. 2010, 59 (9), 1246–1251. 10.1002/pi.2856. DOI

Figg C. A.; Carmean R. N.; Bentz K. C.; Mukherjee S.; Savin D. A.; Sumerlin B. S. Tuning Hydrophobicity To Program Block Copolymer Assemblies from the Inside Out. Macromolecules 2017, 50 (3), 935–943. 10.1021/acs.macromol.6b02754. DOI

Wang Y.; Tan X.; Usman A.; Zhang Y.; Sawczyk M.; Král P.; Zhang C.; Whittaker A. K. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett. 2022, 11 (10), 1195–1201. 10.1021/acsmacrolett.2c00414. PubMed DOI

Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated Water-Soluble Poly(2-Oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020, 53 (15), 6387–6395. 10.1021/acs.macromol.0c01228. DOI

Koshkina O.; Rheinberger T.; Flocke V.; Windfelder A.; Bouvain P.; Hamelmann N. M.; Paulusse J. M.; Gojzewski H.; Flögel U.; Wurm F. R. Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers. Nat. Commun. 2023, 14 (1), 4351.10.1038/s41467-023-40089-0. PubMed DOI PMC

Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly(2-Oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-Oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22 (7), 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI

Ruiz-Cabello J.; Barnett B. P.; Bottomley P. A.; Bulte J. W. M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 2011, 24, 114–129. 10.1002/nbm.1570. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...