Influence of Hydrophobic Side-Chain Length in Amphiphilic Gradient Copoly(2-oxazoline)s on the Therapeutics Loading, Stability, Cellular Uptake and Pharmacokinetics of Nano-Formulation with Curcumin

. 2022 Nov 23 ; 14 (12) : . [epub] 20221123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559069

Grantová podpora
VEGA 1/0156/18, VEGA 2/0042/21, VEGA 2/0172/21, APVV-15-0485, and APVV-20-0202 Slovak Research and Development Agency and Slovak Grant Agency
ITMS project code 313021T081 Open scientific community for modern interdisciplinary research in medicine (Acronym: OPENMED), ITMS2014+: 313011V455 supported by the Operational Programme Integrated Infra-structure, the project Building-up Centre for advanced materials application of t

Odkazy

PubMed 36559069
PubMed Central PMC9781838
DOI 10.3390/pharmaceutics14122576
PII: pharmaceutics14122576
Knihovny.cz E-zdroje

Due to the simple one-step preparation method and a promising application in biomedical research, amphiphilic gradient copoly(2-oxazoline)s are gaining more and more interest compared to their analogous block copolymers. In this work, the curcumin solubilization ability was tested for a series of amphiphilic gradient copoly(2-oxazoline)s with different lengths of hydrophobic side-chains, consisting of 2-ethyl-2-oxazoline as a hydrophilic monomer and 2-(4-alkyloxyphenyl)-2-oxazoline as a hydrophobic monomer. It is shown that the length of the hydrophobic side-chain in the copolymers plays a crucial role in the loading of curcumin onto the self-assembled nanoparticles. The kinetic stability of self-assembled nanoparticles studied using FRET shows a link between their integrity and cellular uptake in human glioblastoma cells. The present study demonstrates how minor changes in the molecular structure of gradient copoly(2-oxazoline)s can lead to significant differences in the loading, stability, cytotoxicity, cellular uptake, and pharmacokinetics of nano-formulations containing curcumin. The obtained results on the behavior of the complex of gradient copoly(2-oxazoline)s and curcumin may contribute to the development of effective next-generation polymeric nanostructures for biomedical applications.

Zobrazit více v PubMed

Cabral H., Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J. Control. Release. 2014;190:465–476. doi: 10.1016/j.jconrel.2014.06.042. PubMed DOI

Kedar U., Phutane P., Shidhaye S., Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–729. doi: 10.1016/j.nano.2010.05.005. PubMed DOI

Zhang Y., Huang Y., Li S. Polymeric micelles: Nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech. 2014;4:862–871. doi: 10.1208/s12249-014-0113-z. PubMed DOI PMC

Begines B., Ortiz T., Pérez-Aranda M., Martínez G., Merinero M., Argüelles Arias F., Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020;10:1403. doi: 10.3390/nano10071403. PubMed DOI PMC

Chali S.P., Ravoo B.J. Polymer nanocontainers for intracellular delivery. Angew. Chem. Int. Ed. 2019;59:2962–2972. doi: 10.1002/anie.201907484. PubMed DOI PMC

Kataoka K., Harada A., Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001;47:113–131. doi: 10.1016/S0169-409X(00)00124-1. PubMed DOI

Ahmad Z., Shah A., Siddiq M., Kraatz H.B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4:17028–17038. doi: 10.1039/C3RA47370H. DOI

Szafraniec J., Btazejczyk A., Kus E., Janik M., Zajac G., Wietrzyk J., Chlopicki S., Zapotoczny S. Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds. Nanoscale. 2017;9:18867–18880. doi: 10.1039/C7NR05851A. PubMed DOI

Szafraniec-szczesny J., Janik-Hazuka M., Odrobinska J., Zapotoczny S. Polymer capsules with hydrophobic liquid cores as functional nanocarriers. Polymer. 2020;12:1999. doi: 10.3390/polym12091999. PubMed DOI PMC

Davis K.A., Matyjaszewski K. Statistical, Gradient, Block and Graft Copolymers by Controlled/Living Radical Polymerizations. Springer; Berlin, Germany: 2012.

Alam M.M., Jack K.S., Hill D.J.T., Whittaker A.K., Peng H. Gradient copolymers—Preparation, properties and practice. Eur. Polym. J. 2019;116:394–414. doi: 10.1016/j.eurpolymj.2019.04.028. DOI

Rabyk M., Destephen A., Lapp A., King S., Noirez L., Billon L., Hruby M., Borisov O., Stepanek P., Deniau E. Interplay of thermosensitivity and pH sensitivity of amphiphilic block–gradient copolymers of dimethylaminoethyl acrylate and styrene. Macromolecules. 2018;51:5219–5233. doi: 10.1021/acs.macromol.8b00621. DOI

Yañez-Macias R., Kulai I., Ulbrich J., Yildirim T., Sungur P., Hoeppener S., Guerrero-Santos R., Schubert U.S., Destarac M., Guerrero-Sanchez C. Thermosensitive spontaneous gradient copolymers with block-and gradient-like features. Polym. Chem. 2017;8:5023–5032. doi: 10.1039/C7PY00495H. DOI

Zheng C. Gradient copolymer micelles: An introduction to structures as well as structural transitions. Soft Matter. 2019;15:5357–5370. doi: 10.1039/C9SM00880B. PubMed DOI

Wong C.L.H., Kim J., Roth C.B., Torkelson J.M. Comparison of critical micelle concentrations of gradient copolymer and block copolymer in homopolymer: Novel characterization by intrinsic fluorescence. Macromolecules. 2007;40:5631–5633. doi: 10.1021/ma071187i. DOI

Kravchenko V.S., Potemkin I.I. Micelles of gradient vs diblock copolymers: Difference in the internal structure and properties. J. Phys. Chem. B. 2016;120:12211–12217. doi: 10.1021/acs.jpcb.6b10120. PubMed DOI

Hoogenboom R. Poly(2-oxazoline)s: Alive and kicking. Macromol. Chem. Phys. 2007;208:18–25. doi: 10.1002/macp.200600558. DOI

Hoogenboom R. Poly(2-oxazoline)s: A polymer class with numerous potential applications. Angew. Chem. Int. Ed. Engl. 2009;48:7978–7994. doi: 10.1002/anie.200901607. PubMed DOI

Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(Ethylene Glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 2010;49:6288–6308. doi: 10.1002/anie.200902672. PubMed DOI

Luxenhofer R., Han Y., Schulz A., Tong J., He Z., Kabanov A.V., Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 2012;33:1613–1631. doi: 10.1002/marc.201200354. PubMed DOI PMC

De la Rosa V.R. Poly(2-oxazoline)s as materials for biomedical applications. J. Mater. Sci. Mater. Med. 2014;25:1211–1225. doi: 10.1007/s10856-013-5034-y. PubMed DOI

Lorson T., Lübtow M.M., Wegener E., Haider M.S., Borova S., Nahm D., Jordan R., Sokolski-Papkov M., Kabanov A.V., Luxenhofer R. Poly(2-Oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–280. doi: 10.1016/j.biomaterials.2018.05.022. PubMed DOI

Sedlacek O., Hoogenboom R. Drug delivery systems based on poly(2-oxazoline)s and poly(2-oxazine)s. Adv. Ther. 2020;3:1900168. doi: 10.1002/adtp.201900168. DOI

Zahoranová A., Luxenhofer R. Poly(2-oxazoline)- and poly(2-oxazine)-based self-assemblies, polyplexes, and drug nanoformulations-an update. Adv. Healthc. Mater. 2021;10:202001382. doi: 10.1002/adhm.202001382. PubMed DOI PMC

Luef K.P., Hoogenboom R., Schubert U.S., Wiesbrock F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv. Polym. Sci. 2015;274:183–208. PubMed PMC

Varanaraja Z., Kim J., Becer C.R. Poly(2-oxazine)s: A comprehensive overview of the polymer structures, physical properties and applications. Eur. Polym. J. 2021;147:110299. doi: 10.1016/j.eurpolymj.2021.110299. DOI

Filippov S.K., Verbraeken B., Konarev P.V., Svergun D.I., Angelov B., Vishnevetskaya N.S., Papadakis C.M., Rogers S., Radulescu A., Courtin T., et al. Block and gradient copoly(2-oxazoline) micelles: Strikingly different on the inside. J. Phys. Chem. Lett. 2017;8:3800–3804. doi: 10.1021/acs.jpclett.7b01588. PubMed DOI

Luxenhofer R., Schulz A., Roques C., Li S., Bronich T.K., Batrakova E.V., Jordan R., Kabanov A.V. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–4979. doi: 10.1016/j.biomaterials.2010.02.057. PubMed DOI PMC

He Z., Schulz A., Wan X., Seitz J., Bludau H., Alakhova D.Y., Darr D.B., Perou C.M., Jordan R., Ojima I., et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation. J. Control. Release. 2015;208:67–75. doi: 10.1016/j.jconrel.2015.02.024. PubMed DOI PMC

He Z., Wan X., Schulz A., Bludau H., Dobrovolskaia M.A., Stern S.T., Montgomery S.A., Yuan H., Li Z., Alakhova D., et al. A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials. 2016;101:296–309. doi: 10.1016/j.biomaterials.2016.06.002. PubMed DOI PMC

Milonaki Y., Kaditi E., Pispas S., Demetzos C. Amphiphilic gradient copolymers of 2-methyl- and 2-phenyl-2-oxazoline: Self-organization in aqueous media and drug encapsulation. J. Polym. Sci. Part A Polym. Chem. 2012;50:1226–1237. doi: 10.1002/pola.25888. DOI

Chroni A., Mavromoustakos T., Pispas S. Poly(2-oxazoline)-based amphiphilic gradient copolymers as nanocarriers for losartan: Insights into drug-polymer interactions. Macromol. 2021;1:177–200. doi: 10.3390/macromol1030014. DOI

Loukotová L., Švec P., Groborz O., Heizer T., Benes H., Raabová H., Belinová T., Herynek V., Hrubý M. Direct comparison of analogous amphiphilic gradient and block polyoxazolines. Macromolecules. 2021;54:8182–8194. doi: 10.1021/acs.macromol.0c02674. DOI

Babuka D., Kolouchova K., Loukotova L., Sedlacek O., Groborz O., Skarkova A., Zhigunov A., Pavlova E., Hoogenboom R., Hruby M., et al. Self-assembly, drug encapsulation, and cellular uptake of block and gradient copolymers of 2-methyl-2-oxazine and 2-n-propyl/butyl-2-oxazoline. Macromolecules. 2021;54:10667–10681. doi: 10.1021/acs.macromol.1c01794. DOI

Huntošová V., Datta S., Lenkavská L., Máčajová M., Bilčík B., Kundeková B., Čavarga I., Kronek J., Jutková A., Miškovský P., et al. Alkyl chain length in poly(2-oxazoline)-based amphiphilic gradient copolymers regulates the delivery of hydrophobic molecules: A case of the biodistribution and the photodynamic activity of the photosensitizer hypericin. Biomacromolecules. 2021;22:4199–4216. doi: 10.1021/acs.biomac.1c00768. PubMed DOI

Datta S., Jutková A., Šrámková P., Lenkavská L., Huntošová V., Chorvát D., Miškovský P., Jancura D., Kronek J. Unravelling the excellent chemical stability and bioavailability of solvent responsive curcumin-loaded 2-ethyl-2-oxazoline-grad-2-(4-dodecyloxyphenyl)-2-oxazoline copolymer nanoparticles for drug delivery. Biomacromolecules. 2018;19:2459–2471. doi: 10.1021/acs.biomac.8b00057. PubMed DOI

Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008;75:787–809. doi: 10.1016/j.bcp.2007.08.016. PubMed DOI

Esatbeyoglu T., Huebbe P., Ernst I.M.A., Chin D., Wagner A.E., Rimbach G. Curcumin from molecule to biological function. Angew. Chem. Int. Ed. 2012;51:5308–5332. doi: 10.1002/anie.201107724. PubMed DOI

Li Y.Y., Zhang T. Targeting cancer stem cells by curcumin and clinical applications. Cancer Lett. 2014;346:197–205. doi: 10.1016/j.canlet.2014.01.012. PubMed DOI

Lin Y.G., Kunnumakkara A.B., Nair A., Merritt W.M., Han L.Y., Armaiz-Pena G.N., Kamat A.A., Spannuth W.A., Gershenson D.M., Lutgendorf S.K., et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappa B pathway. Clin. Cancer Res. 2007;13:3423–3430. doi: 10.1158/1078-0432.CCR-06-3072. PubMed DOI

Nelson K.M., Dahlin J.L., Bisson J., Graham J., Pauli G.F., Walters M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017;60:1620–1637. doi: 10.1021/acs.jmedchem.6b00975. PubMed DOI PMC

Lubtow M.M., Hahn L., Haider M.S., Luxenhofer R. Drug specificity, synergy and antagonism in ultrahigh capacity poly(2-oxazoline)/poly(2-oxazine) based formulations. J. Am. Chem. Soc. 2017;139:10980–10983. doi: 10.1021/jacs.7b05376. PubMed DOI

Hahn L., Lubtow M.M., Lorson T., Schmitt F., Appelt-Menzel A., Schobert R., Luxenhofer R. Investigating the influence of aromatic moieties on the formulation of hydrophobic natural products and drugs in poly(2-oxazoline)-based amphiphiles. Biomacromolecules. 2018;19:3119–3128. doi: 10.1021/acs.biomac.8b00708. PubMed DOI

Raveendran R., Mullen K.M., Wellard R.M., Sharma C.P., Hoogenboom R., Dargaville T.R. Poly(2-oxazoline) block copolymer nanoparticles for curcumin loading and delivery to cancer cells. Eur. Polym. J. 2017;93:682–694. doi: 10.1016/j.eurpolymj.2017.02.043. DOI

Gonçalves C., Gomez J.P., Même W., Rasolonjatovo B., Gosset D., Nedellec S., Hulin P., Huin C., Le Gall T., Montier T., et al. Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del-CFTR cell lines. Eur. J. Pharm. Biopharm. 2017;117:168–181. doi: 10.1016/j.ejpb.2017.04.015. PubMed DOI

Ayache J., Beaunier L., Boumendil J., Ehret G., Laub D. Sample Preparation Handbook for Transmission Electron Microscopy Techniques. Springer; New York, NY, USA: 2010. pp. 1–338.

Maeda H. Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the EPR effect for tumor-selective drug targeting. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012;88:53–71. doi: 10.2183/pjab.88.53. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to image J: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Lim C., Ramsey J.D., Hwang D., Teixeira S.C.M., Poon C.D., Strauss J.D., Rosen E.P., Sokolsky-Papkov M., Kabanov A.V. Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs. Small. 2022;18:2103552. doi: 10.1002/smll.202103552. PubMed DOI PMC

Sedlacek O., Bardoula V., Vuorimaa-Laukkanen E., Gedda L., Edwards K., Radulescu A., Mun G.A., Guo Y., Zhou J., Zhang H., et al. Influence of chain length of gradient and block copoly(2-oxazoline)s on self-assembly and drug encapsulation. Small. 2022;18:e2106251. doi: 10.1002/smll.202106251. PubMed DOI

Glassner M., Vergaelen M., Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2018;67:32–45. doi: 10.1002/pi.5457. DOI

Owen S.C., Chan D.P.Y., Shoichet M.S. Polymeric micelle stability. Nano Today. 2012;7:53–65. doi: 10.1016/j.nantod.2012.01.002. DOI

Sakai-Kato K., Nishiyama N., Kozaki M., Nakanishi T., Matsuda Y., Hirano M., Hanada H., Hisada S., Onodera H., Harashima H., et al. General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. J. Control. Release. 2015;28:76–83. doi: 10.1016/j.jconrel.2015.05.259. PubMed DOI

Lu J., Owen S.C., Shoichet M.S. Stability of self-assembled polymeric micelles in serum. Macromolecules. 2011;44:6002–6008. doi: 10.1021/ma200675w. PubMed DOI PMC

Sun X., Wang G., Zhang H., Hu S., Liu X., Tang J., Shen Y. The Blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano. 2018;12:6179–6192. doi: 10.1021/acsnano.8b02830. PubMed DOI

Swider E., Maharjan S., Houkes K., van Riessen N.K., Figdor C., Srinivas M., Tagit O. Förster resonance energy transfer-based stability assessment of PLGA nanoparticles in vitro and in vivo. ACS Appl. Bio Mater. 2019;18:1131–1140. doi: 10.1021/acsabm.8b00754. PubMed DOI PMC

Morton S.W., Zhao X., Quadir M.A., Hammond P.T. FRET-enabled biological characterization of polymeric micelles. Biomaterials. 2014;35:3489–3496. doi: 10.1016/j.biomaterials.2014.01.027. PubMed DOI PMC

Chen H., Kim S., He W., Wang H., Low P.S., Park K., Cheng J.X. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Forster resonance energy transfer imaging. Langmuir. 2008;24:5213–5217. doi: 10.1021/la703570m. PubMed DOI

Zhao Y., Fay F., Hak S., Manuel Perez-Aguilar J., SanchezGaytan B.L., Goode B., Duivenvoorden R., de Lange Davies C., Bjørkøy A., Weinstein H., et al. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat. Commun. 2016;7:11221. doi: 10.1038/ncomms11221. PubMed DOI PMC

Yang G., Liu Y., Teng J., Zhao C.X. FRET ratiometric nanoprobes for nanoparticle monitoring. Biosensors. 2021;12:505. doi: 10.3390/bios11120505. PubMed DOI PMC

Li Y.P., Budamagunta M.S., Luo J.T., Xiao W.W., Voss J.C., Lam K.S. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins. ACS Nano. 2012;6:9485–9495. doi: 10.1021/nn302317j. PubMed DOI PMC

Priyadarsini K.I. Photophysics, Photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol. C. 2009;10:81–95. doi: 10.1016/j.jphotochemrev.2009.05.001. DOI

Chignell C.F., Bilski P., Reszka K.J., Motten A.G., Sik R.H., Dahl T.A. Spectral and photochemical properties of curcumin. Photochem. Photobiol. 1994;59:295–302. doi: 10.1111/j.1751-1097.1994.tb05037.x. PubMed DOI

Rainey N., Motte L., Aggarwal B.B., Petit P.X. Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis. 2015;6:e2003. doi: 10.1038/cddis.2015.343. PubMed DOI PMC

Zhang Y.M., Yang C.H., Wang W.W., Liu J.J., Liu Q., Huang F., Chu L.P., Gao H.L., Li C., Kong D.L., et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci. Rep. 2016;6:21225. doi: 10.1038/srep21225. PubMed DOI PMC

Fonseca B.B., da Silva M.V., de Morais Ribeiro L.N. The chicken embryo as an in vivo experimental model for drug testing: Advantages and limitations. Lab Anim. 2021;50:138–139. doi: 10.1038/s41684-021-00774-3. PubMed DOI

Victorelli F.D., Cardoso V.M.O., Ferreira N.N., Calixto G.M.F., Fontana C.R., Baltazar F., Gremião M.P.D., Chorilli M. Chick embryo chorioallantoic membrane as a suitable in vivo model to evaluate drug delivery systems for cancer treatment: A review. Eur. J. Pharm. Biopharm. 2020;153:273–284. doi: 10.1016/j.ejpb.2020.06.010. PubMed DOI

Vu B.T., Shahin S.A., Croissant J., Fatieiev Y., Matsumoto K., Le-Hoang Doan T., Yik T., Simargi S., Conteras A., Ratliff L., et al. Chick chorioallantoic membrane assay as an in vivo model to study the effect of nanoparticle-based anticancer drugs in ovarian cancer. Sci. Rep. 2018;8:8524. doi: 10.1038/s41598-018-25573-8. PubMed DOI PMC

Chen L., Wang S., Feng Y., Zhang J., Du Y., Zhang J., Ongeval C.V., Ni Y., Li Y. Utilisation of chick embryo chorioallantoic membrane as a model platform for imaging-navigated biomedical research. Cells. 2021;10:463. doi: 10.3390/cells10020463. PubMed DOI PMC

Vargas A., Zeisser-Labouèbe M., Lange N., Gurny R., Delie F. The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv. Drug Deliv. Rev. 2007;59:1162–1176. doi: 10.1016/j.addr.2007.04.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...