Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
39151065
PubMed Central
PMC11388145
DOI
10.1021/acs.biomac.4c00833
Knihovny.cz E-zdroje
- MeSH
- chytré polymery chemie MeSH
- fluor chemie MeSH
- koncentrace vodíkových iontů MeSH
- kontrastní látky chemie MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- polymery chemie MeSH
- zobrazování fluorovou magnetickou rezonancí * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chytré polymery MeSH
- fluor MeSH
- kontrastní látky MeSH
- polymery MeSH
Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.
Zobrazit více v PubMed
Zhang Q.; Zhang Y.; Wan Y.; Carvalho W.; Hu L.; Serpe M. J. Stimuli-Responsive Polymers for Sensing and Reacting to Environmental Conditions. Prog. Polym. Sci. 2021, 116, 10138610.1016/j.progpolymsci.2021.101386. DOI
Sun H.; Kabb C. P.; Sims M. B.; Sumerlin B. S. Architecture-Transformable Polymers: Reshaping the Future of Stimuli-Responsive Polymers. Prog. Polym. Sci. 2019, 89, 61–75. 10.1016/j.progpolymsci.2018.09.006. DOI
Wei M.; Gao Y.; Li X.; Serpe M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8 (1), 127–143. 10.1039/C6PY01585A. DOI
Mura S.; Nicolas J.; Couvreur P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12 (11), 991–1003. 10.1038/nmat3776. PubMed DOI
Qu M.; Jiang X.; Zhou X.; Wang C.; Wu Q.; Ren L.; Zhu J.; Zhu S.; Tebon P.; Sun W.; Khademhosseini A. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Adv. Healthc. Mater. 2020, 9 (7), 190171410.1002/adhm.201901714. PubMed DOI PMC
Shu T.; Hu L.; Shen Q.; Jiang L.; Zhang Q.; Serpe M. J. Stimuli-Responsive Polymer-Based Systems for Diagnostic Applications. J. Mater. Chem. B 2020, 8 (32), 7042–7061. 10.1039/D0TB00570C. PubMed DOI
Chen B.; Liu L.; Yue R.; Dong Z.; Lu C.; Zhang C.; Guan G.; Liu H.; Zhang Q.; Song G. Stimuli-Responsive Switchable MRI Nanoprobe for Tumor Theranostics. Nano Today 2023, 51, 10193110.1016/j.nantod.2023.101931. DOI
Li C.; Liu S. Polymeric Assemblies and Nanoparticles with Stimuli-Responsive Fluorescence Emission Characteristics. Chem. Commun. 2012, 48 (27), 3262–3278. 10.1039/c2cc17695e. PubMed DOI
Mo Y.; Huang C.; Liu C.; Duan Z.; Liu J.; Wu D. Recent Research Progress of 19F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol. Rapid Commun. 2023, 44 (16), 220074410.1002/marc.202200744. PubMed DOI
van Beek E. J. R.; Kuhl C.; Anzai Y.; Desmond P.; Ehman R. L.; Gong Q.; Gold G.; Gulani V.; Hall-Craggs M.; Leiner T.; Lim C. C. T.; Pipe J. G.; Reeder S.; Reinhold C.; Smits M.; Sodickson D. K.; Tempany C.; Vargas H. A.; Wang M. Value of MRI in Medicine: More than Just Another Test?. J. Magn. Reson. Imaging 2019, 49 (7), e14–e25. 10.1002/jmri.26211. PubMed DOI PMC
Ruiz-Cabello J.; Barnett B. P.; Bottomley P. A.; Bulte J. W. M. Fluorine (19F) MRS and MRI in Biomedicine. NMR Biomed. 2011, 24 (2), 114–129. 10.1002/nbm.1570. PubMed DOI PMC
Tirotta I.; Dichiarante V.; Pigliacelli C.; Cavallo G.; Terraneo G.; Bombelli F. B.; Metrangolo P.; Resnati G. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem. Rev. 2015, 115 (2), 1106–1129. 10.1021/cr500286d. PubMed DOI
Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional Polymers as Metal-Free Magnetic Resonance Imaging Contrast Agents. Prog. Polym. Sci. 2020, 108, 10128610.1016/j.progpolymsci.2020.101286. DOI
Lin H.; Tang X.; Li A.; Gao J. Activatable 19F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. Adv. Mater. 2021, 33 (50), 200565710.1002/adma.202005657. PubMed DOI
Cho M. H.; Shin S. H.; Park S. H.; Kadayakkara D. K.; Kim D.; Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjugate Chem. 2019, 30 (10), 2502–2518. 10.1021/acs.bioconjchem.9b00582. PubMed DOI
Zhu X.; Zhang P.; Liu D.; Tao L.; Du J.; Gao X. Stimuli-Responsive 19F MRI Probes: From Materials Design to in Vitro Detection and in Vivo Diagnosis. TrAC Trends Anal. Chem. 2024, 172, 11760710.1016/j.trac.2024.117607. DOI
Jirak D.; Svoboda J.; Filipová M.; Pop-Georgievski O.; Sedlacek O. Antifouling Fluoropolymer-Coated Nanomaterials for 19 F MRI. Chem. Commun. 2021, 57 (38), 4718–4721. 10.1039/D1CC00642H. PubMed DOI
Fu C.; Demir B.; Alcantara S.; Kumar V.; Han F.; Kelly H. G.; Tan X.; Yu Y.; Xu W.; Zhao J.; Zhang C.; Peng H.; Boyer C.; Woodruff T. M.; Kent S. J.; Searles D. J.; Whittaker A. K. Low-Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew. Chem. 2020, 132 (12), 4759–4765. 10.1002/ange.201914119. PubMed DOI
Feng Z.; Li Q.; Wang W.; Ni Q.; Wang Y.; Song H.; Zhang C.; Kong D.; Liang X.-J.; Huang P. Superhydrophilic Fluorinated Polymer and Nanogel for High-Performance 19F Magnetic Resonance Imaging. Biomaterials 2020, 256, 12018410.1016/j.biomaterials.2020.120184. PubMed DOI
Zhou L.; Triozzi A.; Figueiredo M.; Emrick T. Fluorinated Polymer Zwitterions: Choline Phosphates and Phosphorylcholines. ACS Macro Lett. 2021, 10 (10), 1204–1209. 10.1021/acsmacrolett.1c00451. PubMed DOI
Zhou L.; Yang Z.; Pagaduan J. N.; Emrick T. Fluorinated Zwitterionic Polymers as Dynamic Surface Coatings. Polym. Chem. 2022, 14 (1), 32–36. 10.1039/D2PY01197B. DOI
Tennie I. K.; Kilbinger A. F. M. Polymeric 19F MRI Contrast Agents Prepared by Ring-Opening Metathesis Polymerization/Dihydroxylation. Macromolecules 2020, 53 (23), 10386–10396. 10.1021/acs.macromol.0c01585. DOI
Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated Water-Soluble Poly(2-Oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020, 53 (15), 6387–6395. 10.1021/acs.macromol.0c01228. DOI
Fu C.; Zhang C.; Peng H.; Han F.; Baker C.; Wu Y.; Ta H.; Whittaker A. K. Enhanced Performance of Polymeric 19F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules 2018, 51 (15), 5875–5882. 10.1021/acs.macromol.8b01190. DOI
Reis M.; Gusev F.; Taylor N. G.; Chung S. H.; Verber M. D.; Lee Y. Z.; Isayev O.; Leibfarth F. A. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J. Am. Chem. Soc. 2021, 143 (42), 17677–17689. 10.1021/jacs.1c08181. PubMed DOI PMC
Panakkal V. M.; Havlicek D.; Pavlova E.; Filipová M.; Bener S.; Jirak D.; Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)Acrylamide in Water. Biomacromolecules 2022, 23 (11), 4814–4824. 10.1021/acs.biomac.2c00981. PubMed DOI PMC
Havlicek D.; Panakkal V. M.; Voska L.; Sedlacek O.; Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol. Biosci. 2024, 24 (6), 230051010.1002/mabi.202300510. PubMed DOI
Peng H.; Blakey I.; Dargaville B.; Rasoul F.; Rose S.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Block Copolymers as MRI Imaging Agents. Biomacromolecules 2009, 10 (2), 374–381. 10.1021/bm801136m. PubMed DOI
Du W.; Nyström A. M.; Zhang L.; Powell K. T.; Li Y.; Cheng C.; Wickline S. A.; Wooley K. L. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F Magnetic Resonance Imaging Agent Assemblies. Biomacromolecules 2008, 9 (10), 2826–2833. 10.1021/bm800595b. PubMed DOI PMC
Zhang C.; Moonshi S. S.; Han Y.; Puttick S.; Peng H.; Magoling B. J. A.; Reid J. C.; Bernardi S.; Searles D. J.; Král P.; Whittaker A. K. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017, 50 (15), 5953–5963. 10.1021/acs.macromol.7b01285. DOI
Zhang C.; Moonshi S. S.; Wang W.; Ta H. T.; Han Y.; Han F. Y.; Peng H.; Král P.; Rolfe B. E.; Gooding J. J.; Gaus K.; Whittaker A. K. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS Nano 2018, 12 (9), 9162–9176. 10.1021/acsnano.8b03726. PubMed DOI
Nurmi L.; Peng H.; Seppälä J.; Haddleton D. M.; Blakey I.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Polyelectrolytes as Components in 19F MRI-Detectable Nanoparticles. Polym. Chem. 2010, 1 (7), 1039–1047. 10.1039/c0py00035c. DOI
Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. Multifunctional Hyperbranched Polymers for CT/19F MRI Bimodal Molecular Imaging. Polym. Chem. 2016, 7 (5), 1059–1069. 10.1039/C5PY01707F. DOI
Hill L. K.; Frezzo J. A.; Katyal P.; Hoang D. M.; Ben Youss Gironda Z.; Xu C.; Xie X.; Delgado-Fukushima E.; Wadghiri Y. Z.; Montclare J. K. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS Nano 2019, 13 (3), 2969–2985. 10.1021/acsnano.8b07481. PubMed DOI PMC
Britton D.; Legocki J.; Aristizabal O.; Mishkit O.; Liu C.; Jia S.; Renfrew P. D.; Bonneau R.; Wadghiri Y. Z.; Montclare J. K. Protein-Engineered Fibers For Drug Encapsulation Traceable via 19F Magnetic Resonance. ACS Appl. Nano Mater. 2023, 6 (22), 21245–21257. 10.1021/acsanm.3c04357. PubMed DOI PMC
Sedlacek O.; Jirak D.; Galisova A.; Jager E.; Laaser J. E.; Lodge T. P.; Stepanek P.; Hruby M. 19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chem. Mater. 2018, 30 (15), 4892–4896. 10.1021/acs.chemmater.8b02115. DOI
Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H. Thermoresponsive Fluorinated Polyacrylamides with Low Cytotoxicity. Polym. Chem. 2013, 4 (7), 2219–2223. 10.1039/C2PY20747H. DOI
Kolouchova K.; Sedlacek O.; Jirak D.; Babuka D.; Blahut J.; Kotek J.; Vit M.; Trousil J.; Konefał R.; Janouskova O.; Podhorska B.; Slouf M.; Hruby M. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules 2018, 19 (8), 3515–3524. 10.1021/acs.biomac.8b00812. PubMed DOI
Babuka D.; Kolouchova K.; Hruby M.; Groborz O.; Tosner Z.; Zhigunov A.; Stepanek P. Investigation of the Internal Structure of Thermoresponsive Diblock Poly(2-Methyl-2-Oxazoline)-b-Poly[N-(2,2-Difluoroethyl)Acrylamide] Copolymer Nanoparticles. Eur. Polym. J. 2019, 121, 10930610.1016/j.eurpolymj.2019.109306. DOI
Kolouchova K.; Groborz O.; Slouf M.; Herynek V.; Parmentier L.; Babuka D.; Cernochova Z.; Koucky F.; Sedlacek O.; Hruby M.; Hoogenboom R.; Van Vlierberghe S. Thermoresponsive Triblock Copolymers as Widely Applicable 19F Magnetic Resonance Imaging Tracers. Chem. Mater. 2022, 34 (24), 10902–10916. 10.1021/acs.chemmater.2c02589. DOI
Kolouchova K.; Groborz O.; Herynek V.; Petrov O. V.; Lang J.; Dunlop D.; Parmentier L.; Szabó A.; Schaubroeck D.; Adriaensens P.; Van Vlierberghe S. Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study. Chem. Mater. 2024, 36 (1), 183–196. 10.1021/acs.chemmater.3c01574. DOI
Kolouchova K.; Groborz O.; Cernochova Z.; Skarkova A.; Brabek J.; Rosel D.; Svec P.; Starcuk Z.; Slouf M.; Hruby M. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19F MRI Theranostics. Biomacromolecules 2021, 22 (6), 2325–2337. 10.1021/acs.biomac.0c01316. PubMed DOI
Hruby M.; Pouckova P.; Zadinova M.; Kucka J.; Lebeda O. Thermoresponsive Polymeric Radionuclide Delivery System—An Injectable Brachytherapy. Eur. J. Pharm. Sci. 2011, 42 (5), 484–488. 10.1016/j.ejps.2011.02.002. PubMed DOI
Kolouchova K.; Jirak D.; Groborz O.; Sedlacek O.; Ziolkowska N.; Vit M.; Sticova E.; Galisova A.; Svec P.; Trousil J.; Hajek M.; Hruby M. Implant-Forming Polymeric 19F MRI-Tracer with Tunable Dissolution. J. Controlled Release 2020, 327, 50–60. 10.1016/j.jconrel.2020.07.026. PubMed DOI
Jirát-Ziółkowska N.; Vít M.; Groborz O.; Kolouchová K.; Červený D.; Sedláček O.; Jirák D. Long-Term in Vivo Dissolution of Thermo- and pH-Responsive, 19 F Magnetic Resonance-Traceable and Injectable Polymer Implants. Nanoscale Adv. 2024, 6 (12), 3041–3051. 10.1039/D4NA00212A. PubMed DOI PMC
Zhang C.; Sanchez R. J. P.; Fu C.; Clayden-Zabik R.; Peng H.; Kempe K.; Whittaker A. K. Importance of Thermally Induced Aggregation on 19F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-Oxazoline)s. Biomacromolecules 2019, 20 (1), 365–374. 10.1021/acs.biomac.8b01549. PubMed DOI
Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly(2-Oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-Oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22 (7), 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI
Usman A.; Zhang C.; Zhao J.; Peng H.; Kurniawan N. D.; Fu C.; Hill D. J. T.; Whittaker A. K. Tuning the Thermoresponsive Properties of PEG-Based Fluorinated Polymers and Stimuli Responsive Drug Release for Switchable 19F Magnetic Resonance Imaging. Polym. Chem. 2021, 12 (38), 5438–5448. 10.1039/D1PY00602A. DOI
Zhu J.; Xiao Y.; Zhang H.; Li Y.; Yuan Y.; Yang Z.; Chen S.; Zheng X.; Zhou X.; Jiang Z.-X. Peptidic Monodisperse PEG “Combs” with Fine-Tunable LCST and Multiple Imaging Modalities. Biomacromolecules 2019, 20 (3), 1281–1287. 10.1021/acs.biomac.8b01693. PubMed DOI
Wang X.; Li Y.; Wu T.; Yang Z.; Zheng X.; Chen S.; Zhou X.; Jiang Z.-X. Quantitatively Fine-Tuning the Physicochemical and Biological Properties of Peptidic Polymers through Monodisperse PEGylation. Biomacromolecules 2020, 21 (2), 725–731. 10.1021/acs.biomac.9b01425. PubMed DOI
Zhu J.; Zhang H.; Chen K.; Li Y.; Yang Z.; Chen S.; Zheng X.; Zhou X.; Jiang Z.-X. Peptidic Monodisperse PEG “Comb” as Multifunctional “Add-On” Module for Imaging-Traceable and Thermo-Responsive Theranostics. Adv. Healthc. Mater. 2020, 9 (3), 190133110.1002/adhm.201901331. PubMed DOI
Criscione J. M.; Le B. L.; Stern E.; Brennan M.; Rahner C.; Papademetris X.; Fahmy T. M. Self-Assembly of pH-Responsive Fluorinated Dendrimer-Based Particulates for Drug Delivery and Noninvasive Imaging. Biomaterials 2009, 30 (23), 3946–3955. 10.1016/j.biomaterials.2009.04.014. PubMed DOI
Munkhbat O.; Canakci M.; Zheng S.; Hu W.; Osborne B.; Bogdanov A. A.; Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019, 20 (2), 790–800. 10.1021/acs.biomac.8b01383. PubMed DOI PMC
Fu C.; Bongers A.; Wang K.; Yang B.; Zhao Y.; Wu H.; Wei Y.; Duong H. T. T.; Wang Z.; Tao L. Facile Synthesis of a Multifunctional Copolymer via a Concurrent RAFT-Enzymatic System for Theranostic Applications. Polym. Chem. 2016, 7 (3), 546–552. 10.1039/C5PY01652E. DOI
Fuchs A. V.; Bapat A. P.; Cowin G. J.; Thurecht K. J. Switchable 19F MRI Polymer Theranostics: Towards in Situ Quantifiable Drug Release. Polym. Chem. 2017, 8 (34), 5157–5166. 10.1039/C7PY00345E. DOI
Zhang Q.; Yan S.; Yan X.; Lv Y. Recent Advances in Metal-Organic Frameworks: Synthesis, Application and Toxicity. Sci. Total Environ. 2023, 902, 16594410.1016/j.scitotenv.2023.165944. PubMed DOI
Wang Q.; Yu Y.; Chang Y.; Xu X.; Wu M.; Ediriweera G. R.; Peng H.; Zhen X.; Jiang X.; Searles D. J.; Fu C.; Whittaker A. K. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS Nano 2023, 17 (9), 8483–8498. 10.1021/acsnano.3c00694. PubMed DOI
Steppan C. G.; Simon L.; Blackwood C.; Emrick T. Sulfobetaine Zwitterions with Embedded Fluorocarbons: Synthesis and Interfacial Properties. ACS Macro Lett. 2024, 13, 761–767. 10.1021/acsmacrolett.4c00198. PubMed DOI
Evans S. M.; Koch C. J. Prognostic Significance of Tumor Oxygenation in Humans. Cancer Lett. 2003, 195 (1), 1–16. 10.1016/S0304-3835(03)00012-0. PubMed DOI
Parhami P.; Fung B. M. Fluorine-19 Relaxation Study of Perfluoro Chemicals as Oxygen Carriers. J. Phys. Chem. 1983, 87 (11), 1928–1931. 10.1021/j100234a020. DOI
Taylor N. G.; Chung S. H.; Kwansa A. L.; Johnson R. R. III; Teator A. J.; Milliken N. J. B.; Koshlap K. M.; Yingling Y. G.; Lee Y. Z.; Leibfarth F. A. Partially Fluorinated Copolymers as Oxygen Sensitive 19F MRI Agents. Chem. – Eur. J. 2020, 26 (44), 9982–9990. 10.1002/chem.202001505. PubMed DOI
Lee A. L.; Gee C. T.; Weegman B. P.; Einstein S. A.; Juelfs A. R.; Ring H. L.; Hurley K. R.; Egger S. M.; Swindlehurst G.; Garwood M.; Pomerantz W. C. K.; Haynes C. L. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles. ACS Nano 2017, 11 (6), 5623–5632. 10.1021/acsnano.7b01006. PubMed DOI PMC
Ouwerkerk R.; Bleich K. B.; Gillen J. S.; Pomper M. G.; Bottomley P. A. Tissue Sodium Concentration in Human Brain Tumors as Measured with 23Na MR Imaging. Radiology 2003, 227 (2), 529–537. 10.1148/radiol.2272020483. PubMed DOI
Zhang C.; Peng H.; Whittaker A. K. NMR Investigation of Effect of Dissolved Salts on the Thermoresponsive Behavior of Oligo(Ethylene Glycol)-Methacrylate-Based Polymers. J. Polym. Sci. Part Polym. Chem. 2014, 52 (16), 2375–2385. 10.1002/pola.27252. DOI
Zhang C.; Moonshi S. S.; Peng H.; Puttick S.; Reid J.; Bernardi S.; Searles D. J.; Whittaker A. K. Ion-Responsive 19F MRI Contrast Agents for the Detection of Cancer Cells. ACS Sens. 2016, 1 (6), 757–765. 10.1021/acssensors.6b00216. DOI
Gianolio E.; Napolitano R.; Fedeli F.; Arena F.; Aime S. Poly-β-Cyclodextrin Based Platform for pH Mapping via a Ratiometric 19F/1H MRI Method. Chem. Commun. 2009, (40), 6044–6046. 10.1039/b914540k. PubMed DOI
Deirram N.; Zhang C.; Kermaniyan S. S.; Johnston A. P. R.; Such G. K. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019, 40 (10), 180091710.1002/marc.201800917. PubMed DOI
Oishi M.; Sumitani S.; Nagasaki Y. On–Off Regulation of 19F Magnetic Resonance Signals Based on pH-Sensitive PEGylated Nanogels for Potential Tumor-Specific Smart 19F MRI Probes. Bioconjugate Chem. 2007, 18 (5), 1379–1382. 10.1021/bc7002154. PubMed DOI
Oishi M.; Sumitani S.; Bronich T. K.; Kabanov A. V.; Boska M. D.; Nagasaki Y. Novel 19F MRS/I Nanoprobe Based on pH-Responsive PEGylated Nanogel: pH-Dependent 19F Magnetic Resonance Studies. Chem. Lett. 2009, 38 (2), 128–129. 10.1246/cl.2009.128. DOI
Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. pH-Responsive Star Polymer Nanoparticles: Potential 19F MRI Contrast Agents for Tumour-Selective Imaging. Polym. Chem. 2013, 4 (16), 4480–4489. 10.1039/c3py00654a. DOI
Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. Biodegradable Core Crosslinked Star Polymer Nanoparticles as 19F MRI Contrast Agents for Selective Imaging. Polym. Chem. 2014, 5 (5), 1760–1771. 10.1039/C3PY01311A. DOI
Zalewski M.; Janasik D.; Kapała A.; Minoshima M.; Sugihara F.; Raj W.; Pietrasik J.; Kikuchi K.; Krawczyk T. pH-Sensitive Polymethacrylates as Potential Contrast Agents in 19F MRI. Macromol. Chem. Phys. 2022, 223 (14), 220002710.1002/macp.202200027. DOI
Zhang C.; Li L.; Han F. Y.; Yu X.; Tan X.; Fu C.; Xu Z. P.; Whittaker A. K. Integrating Fluorinated Polymer and Manganese-Layered Double Hydroxide Nanoparticles as pH-Activated 19F MRI Agents for Specific and Sensitive Detection of Breast Cancer. Small 2019, 15 (36), 190230910.1002/smll.201902309. PubMed DOI
Huo M.; Yuan J.; Tao L.; Wei Y. Redox-Responsive Polymers for Drug Delivery: From Molecular Design to Applications. Polym. Chem. 2014, 5 (5), 1519–1528. 10.1039/C3PY01192E. DOI
Wang P.; Gong Q.; Hu J.; Li X.; Zhang X. Reactive Oxygen Species (ROS)-Responsive Prodrugs, Probes, and Theranostic Prodrugs: Applications in the ROS-Related Diseases. J. Med. Chem. 2021, 64 (1), 298–325. 10.1021/acs.jmedchem.0c01704. PubMed DOI
Criado-Gonzalez M.; Mecerreyes D. Thioether-Based ROS Responsive Polymers for Biomedical Applications. J. Mater. Chem. B 2022, 10 (37), 7206–7221. 10.1039/D2TB00615D. PubMed DOI
Tao W.; He Z. ROS-Responsive Drug Delivery Systems for Biomedical Applications. Asian J. Pharm. Sci. 2018, 13 (2), 101–112. 10.1016/j.ajps.2017.11.002. PubMed DOI PMC
Huang P.; Guo W.; Yang G.; Song H.; Wang Y.; Wang C.; Kong D.; Wang W. Fluorine Meets Amine: Reducing Microenvironment-Induced Amino-Activatable Nanoprobes for 19F-Magnetic Resonance Imaging of Biothiols. ACS Appl. Mater. Interfaces 2018, 10 (22), 18532–18542. 10.1021/acsami.8b03764. PubMed DOI
Fu C.; Tang J.; Pye A.; Liu T.; Zhang C.; Tan X.; Han F.; Peng H.; Whittaker A. K. Fluorinated Glycopolymers as Reduction-Responsive 19F MRI Agents for Targeted Imaging of Cancer. Biomacromolecules 2019, 20 (5), 2043–2050. 10.1021/acs.biomac.9b00241. PubMed DOI
Li A.; Li L.; Liu X.; Chen D.; Fan Y.; Lin H.; Gao J. Deep-Tissue Real-Time Imaging of Drug-Induced Liver Injury with Peroxynitrite-Responsive 19F MRI Nanoprobes. Chem. Commun. 2021, 57 (75), 9622–9625. 10.1039/D1CC03913J. PubMed DOI
Alhaidari L. M.; Spain S. G. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers 2023, 15 (7), 1778.10.3390/polym15071778. PubMed DOI PMC
Buzhor M.; Avram L.; Frish L.; Cohen Y.; Amir R. J. Fluorinated Smart Micelles as Enzyme-Responsive Probes for 19F-Magnetic Resonance. J. Mater. Chem. B 2016, 4 (18), 3037–3042. 10.1039/C5TB02445E. PubMed DOI
Fu C.; Herbst S.; Zhang C.; Whittaker A. K. Polymeric 19F MRI Agents Responsive to Reactive Oxygen Species. Polym. Chem. 2017, 8 (31), 4585–4595. 10.1039/C7PY00986K. DOI
Li Y.; Liu J.; He J.; Dey A.; Bui V. D.; Park J. H. Recent Advances in Stimuli-Responsive Self-Immolative Polymers for Drug Delivery and Molecular Imaging. Chem. Mater. 2024, 36 (9), 4054–4077. 10.1021/acs.chemmater.4c00583. DOI
Ding Z.; Cen J.; Wu Y.; Zhong K.; Liu G.; Hu J.; Liu S. Self-Immolative Nanoparticles for Stimuli-Triggered Activation, Covalent Trapping and Accumulation of in Situ Generated Small Molecule Theranostic Fragments. Giant 2020, 1, 10001210.1016/j.giant.2020.100012. DOI
Tang X.; Gong X.; Li A.; Lin H.; Peng C.; Zhang X.; Chen X.; Gao J. Cascaded Multiresponsive Self-Assembled 19F MRI Nanoprobes with Redox-Triggered Activation and NIR-Induced Amplification. Nano Lett. 2020, 20 (1), 363–371. 10.1021/acs.nanolett.9b04016. PubMed DOI
Jiang Y.; Luo X.; Chen L.; Lin H.; Gao J. Multicolor 19F Magnetic Resonance Imaging: A Promising Medical Technique for in Vivo Visualization of Multiple Biological Targets. Fundam. Res. 2023, 3 (4), 529–533. 10.1016/j.fmre.2022.10.016. PubMed DOI PMC
Zhu X.; Xiong H.; Wang S.; Li Y.; Chi J.; Wang X.; Li T.; Zhou Q.; Gao J.; Shi S. Fluorinated Ionic Liquid Based Multicolor 19F MRI Nanoprobes for In Vivo Sensing of Multiple Biological Targets. Adv. Healthc. Mater. 2022, 11 (8), 210207910.1002/adhm.202102079. PubMed DOI
Akazawa K.; Sugihara F.; Nakamura T.; Matsushita H.; Mukai H.; Akimoto R.; Minoshima M.; Mizukami S.; Kikuchi K. Perfluorocarbon-Based 19F MRI Nanoprobes for In Vivo Multicolor Imaging. Angew. Chem. 2018, 130 (51), 16984–16989. 10.1002/ange.201810363. PubMed DOI PMC
Li A.; Luo X.; Li L.; Chen D.; Liu X.; Yang Z.; Yang L.; Gao J.; Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal. Chem. 2021, 93 (49), 16552–16561. 10.1021/acs.analchem.1c03744. PubMed DOI
Chang Y.; Xu X.; Zhang R.; Peng H.; Liu K.; Whittaker A. K.; Fu C. Oxidation-Responsive Polymeric Fluorinated Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2024, 57 (1), 263–271. 10.1021/acs.macromol.3c01895. DOI
Švec P.; Petrov O. V.; Lang J.; Štěpnička P.; Groborz O.; Dunlop D.; Blahut J.; Kolouchová K.; Loukotová L.; Sedláček O.; Heizer T.; Tošner Z.; Šlouf M.; Beneš H.; Hoogenboom R.; Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2022, 55 (2), 658–671. 10.1021/acs.macromol.1c01723. DOI
Couturaud B.; Houston Z. H.; Cowin G. J.; Prokeš I.; Foster J. C.; Thurecht K. J.; O’Reilly R. K. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett. 2019, 8 (11), 1479–1483. 10.1021/acsmacrolett.9b00626. PubMed DOI
Huang X.; Huang G.; Zhang S.; Sagiyama K.; Togao O.; Ma X.; Wang Y.; Li Y.; Soesbe T. C.; Sumer B. D.; Takahashi M.; Sherry A. D.; Gao J. Multi-Chromatic pH-Activatable 19F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes. Angew. Chem., Int. Ed. 2013, 52 (31), 8074–8078. 10.1002/anie.201301135. PubMed DOI PMC