Stimuli-Responsive Polymers for Advanced 19F Magnetic Resonance Imaging: From Chemical Design to Biomedical Applications

. 2024 Sep 09 ; 25 (9) : 5630-5649. [epub] 20240816

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39151065

Fluorine magnetic resonance imaging (19F MRI) is a rapidly evolving research area with a high potential to advance the field of clinical diagnostics. In this review, we provide an overview of the recent progress in the field of fluorinated stimuli-responsive polymers applied as 19F MRI tracers. These polymers respond to internal or external stimuli (e.g., temperature, pH, oxidative stress, and specific molecules) by altering their physicochemical properties, such as self-assembly, drug release, and polymer degradation. Incorporating noninvasive 19F labels enables us to track the biodistribution of such polymers. Furthermore, by triggering polymer transformation, we can induce changes in 19F MRI signals, including attenuation, amplification, and chemical shift changes, to monitor alterations in the environment of the tracer. Ultimately, this review highlights the emerging potential of stimuli-responsive fluoropolymer 19F MRI tracers in the current context of polymer diagnostics research.

Zobrazit více v PubMed

Zhang Q.; Zhang Y.; Wan Y.; Carvalho W.; Hu L.; Serpe M. J. Stimuli-Responsive Polymers for Sensing and Reacting to Environmental Conditions. Prog. Polym. Sci. 2021, 116, 10138610.1016/j.progpolymsci.2021.101386. DOI

Sun H.; Kabb C. P.; Sims M. B.; Sumerlin B. S. Architecture-Transformable Polymers: Reshaping the Future of Stimuli-Responsive Polymers. Prog. Polym. Sci. 2019, 89, 61–75. 10.1016/j.progpolymsci.2018.09.006. DOI

Wei M.; Gao Y.; Li X.; Serpe M. J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2017, 8 (1), 127–143. 10.1039/C6PY01585A. DOI

Mura S.; Nicolas J.; Couvreur P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12 (11), 991–1003. 10.1038/nmat3776. PubMed DOI

Qu M.; Jiang X.; Zhou X.; Wang C.; Wu Q.; Ren L.; Zhu J.; Zhu S.; Tebon P.; Sun W.; Khademhosseini A. Stimuli-Responsive Delivery of Growth Factors for Tissue Engineering. Adv. Healthc. Mater. 2020, 9 (7), 190171410.1002/adhm.201901714. PubMed DOI PMC

Shu T.; Hu L.; Shen Q.; Jiang L.; Zhang Q.; Serpe M. J. Stimuli-Responsive Polymer-Based Systems for Diagnostic Applications. J. Mater. Chem. B 2020, 8 (32), 7042–7061. 10.1039/D0TB00570C. PubMed DOI

Chen B.; Liu L.; Yue R.; Dong Z.; Lu C.; Zhang C.; Guan G.; Liu H.; Zhang Q.; Song G. Stimuli-Responsive Switchable MRI Nanoprobe for Tumor Theranostics. Nano Today 2023, 51, 10193110.1016/j.nantod.2023.101931. DOI

Li C.; Liu S. Polymeric Assemblies and Nanoparticles with Stimuli-Responsive Fluorescence Emission Characteristics. Chem. Commun. 2012, 48 (27), 3262–3278. 10.1039/c2cc17695e. PubMed DOI

Mo Y.; Huang C.; Liu C.; Duan Z.; Liu J.; Wu D. Recent Research Progress of 19F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol. Rapid Commun. 2023, 44 (16), 220074410.1002/marc.202200744. PubMed DOI

van Beek E. J. R.; Kuhl C.; Anzai Y.; Desmond P.; Ehman R. L.; Gong Q.; Gold G.; Gulani V.; Hall-Craggs M.; Leiner T.; Lim C. C. T.; Pipe J. G.; Reeder S.; Reinhold C.; Smits M.; Sodickson D. K.; Tempany C.; Vargas H. A.; Wang M. Value of MRI in Medicine: More than Just Another Test?. J. Magn. Reson. Imaging 2019, 49 (7), e14–e25. 10.1002/jmri.26211. PubMed DOI PMC

Ruiz-Cabello J.; Barnett B. P.; Bottomley P. A.; Bulte J. W. M. Fluorine (19F) MRS and MRI in Biomedicine. NMR Biomed. 2011, 24 (2), 114–129. 10.1002/nbm.1570. PubMed DOI PMC

Tirotta I.; Dichiarante V.; Pigliacelli C.; Cavallo G.; Terraneo G.; Bombelli F. B.; Metrangolo P.; Resnati G. 19F Magnetic Resonance Imaging (MRI): From Design of Materials to Clinical Applications. Chem. Rev. 2015, 115 (2), 1106–1129. 10.1021/cr500286d. PubMed DOI

Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional Polymers as Metal-Free Magnetic Resonance Imaging Contrast Agents. Prog. Polym. Sci. 2020, 108, 10128610.1016/j.progpolymsci.2020.101286. DOI

Lin H.; Tang X.; Li A.; Gao J. Activatable 19F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. Adv. Mater. 2021, 33 (50), 200565710.1002/adma.202005657. PubMed DOI

Cho M. H.; Shin S. H.; Park S. H.; Kadayakkara D. K.; Kim D.; Choi Y. Targeted, Stimuli-Responsive, and Theranostic 19F Magnetic Resonance Imaging Probes. Bioconjugate Chem. 2019, 30 (10), 2502–2518. 10.1021/acs.bioconjchem.9b00582. PubMed DOI

Zhu X.; Zhang P.; Liu D.; Tao L.; Du J.; Gao X. Stimuli-Responsive 19F MRI Probes: From Materials Design to in Vitro Detection and in Vivo Diagnosis. TrAC Trends Anal. Chem. 2024, 172, 11760710.1016/j.trac.2024.117607. DOI

Jirak D.; Svoboda J.; Filipová M.; Pop-Georgievski O.; Sedlacek O. Antifouling Fluoropolymer-Coated Nanomaterials for 19 F MRI. Chem. Commun. 2021, 57 (38), 4718–4721. 10.1039/D1CC00642H. PubMed DOI

Fu C.; Demir B.; Alcantara S.; Kumar V.; Han F.; Kelly H. G.; Tan X.; Yu Y.; Xu W.; Zhao J.; Zhang C.; Peng H.; Boyer C.; Woodruff T. M.; Kent S. J.; Searles D. J.; Whittaker A. K. Low-Fouling Fluoropolymers for Bioconjugation and In Vivo Tracking. Angew. Chem. 2020, 132 (12), 4759–4765. 10.1002/ange.201914119. PubMed DOI

Feng Z.; Li Q.; Wang W.; Ni Q.; Wang Y.; Song H.; Zhang C.; Kong D.; Liang X.-J.; Huang P. Superhydrophilic Fluorinated Polymer and Nanogel for High-Performance 19F Magnetic Resonance Imaging. Biomaterials 2020, 256, 12018410.1016/j.biomaterials.2020.120184. PubMed DOI

Zhou L.; Triozzi A.; Figueiredo M.; Emrick T. Fluorinated Polymer Zwitterions: Choline Phosphates and Phosphorylcholines. ACS Macro Lett. 2021, 10 (10), 1204–1209. 10.1021/acsmacrolett.1c00451. PubMed DOI

Zhou L.; Yang Z.; Pagaduan J. N.; Emrick T. Fluorinated Zwitterionic Polymers as Dynamic Surface Coatings. Polym. Chem. 2022, 14 (1), 32–36. 10.1039/D2PY01197B. DOI

Tennie I. K.; Kilbinger A. F. M. Polymeric 19F MRI Contrast Agents Prepared by Ring-Opening Metathesis Polymerization/Dihydroxylation. Macromolecules 2020, 53 (23), 10386–10396. 10.1021/acs.macromol.0c01585. DOI

Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated Water-Soluble Poly(2-Oxazoline)s as Highly Sensitive 19F MRI Contrast Agents. Macromolecules 2020, 53 (15), 6387–6395. 10.1021/acs.macromol.0c01228. DOI

Fu C.; Zhang C.; Peng H.; Han F.; Baker C.; Wu Y.; Ta H.; Whittaker A. K. Enhanced Performance of Polymeric 19F MRI Contrast Agents through Incorporation of Highly Water-Soluble Monomer MSEA. Macromolecules 2018, 51 (15), 5875–5882. 10.1021/acs.macromol.8b01190. DOI

Reis M.; Gusev F.; Taylor N. G.; Chung S. H.; Verber M. D.; Lee Y. Z.; Isayev O.; Leibfarth F. A. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J. Am. Chem. Soc. 2021, 143 (42), 17677–17689. 10.1021/jacs.1c08181. PubMed DOI PMC

Panakkal V. M.; Havlicek D.; Pavlova E.; Filipová M.; Bener S.; Jirak D.; Sedlacek O. Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)Acrylamide in Water. Biomacromolecules 2022, 23 (11), 4814–4824. 10.1021/acs.biomac.2c00981. PubMed DOI PMC

Havlicek D.; Panakkal V. M.; Voska L.; Sedlacek O.; Jirak D. Self-Assembled Fluorinated Nanoparticles as Sensitive and Biocompatible Theranostic Platforms for 19F MRI. Macromol. Biosci. 2024, 24 (6), 230051010.1002/mabi.202300510. PubMed DOI

Peng H.; Blakey I.; Dargaville B.; Rasoul F.; Rose S.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Block Copolymers as MRI Imaging Agents. Biomacromolecules 2009, 10 (2), 374–381. 10.1021/bm801136m. PubMed DOI

Du W.; Nyström A. M.; Zhang L.; Powell K. T.; Li Y.; Cheng C.; Wickline S. A.; Wooley K. L. Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic 19F Magnetic Resonance Imaging Agent Assemblies. Biomacromolecules 2008, 9 (10), 2826–2833. 10.1021/bm800595b. PubMed DOI PMC

Zhang C.; Moonshi S. S.; Han Y.; Puttick S.; Peng H.; Magoling B. J. A.; Reid J. C.; Bernardi S.; Searles D. J.; Král P.; Whittaker A. K. PFPE-Based Polymeric 19F MRI Agents: A New Class of Contrast Agents with Outstanding Sensitivity. Macromolecules 2017, 50 (15), 5953–5963. 10.1021/acs.macromol.7b01285. DOI

Zhang C.; Moonshi S. S.; Wang W.; Ta H. T.; Han Y.; Han F. Y.; Peng H.; Král P.; Rolfe B. E.; Gooding J. J.; Gaus K.; Whittaker A. K. High F-Content Perfluoropolyether-Based Nanoparticles for Targeted Detection of Breast Cancer by 19F Magnetic Resonance and Optical Imaging. ACS Nano 2018, 12 (9), 9162–9176. 10.1021/acsnano.8b03726. PubMed DOI

Nurmi L.; Peng H.; Seppälä J.; Haddleton D. M.; Blakey I.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Polyelectrolytes as Components in 19F MRI-Detectable Nanoparticles. Polym. Chem. 2010, 1 (7), 1039–1047. 10.1039/c0py00035c. DOI

Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. Multifunctional Hyperbranched Polymers for CT/19F MRI Bimodal Molecular Imaging. Polym. Chem. 2016, 7 (5), 1059–1069. 10.1039/C5PY01707F. DOI

Hill L. K.; Frezzo J. A.; Katyal P.; Hoang D. M.; Ben Youss Gironda Z.; Xu C.; Xie X.; Delgado-Fukushima E.; Wadghiri Y. Z.; Montclare J. K. Protein-Engineered Nanoscale Micelles for Dynamic 19F Magnetic Resonance and Therapeutic Drug Delivery. ACS Nano 2019, 13 (3), 2969–2985. 10.1021/acsnano.8b07481. PubMed DOI PMC

Britton D.; Legocki J.; Aristizabal O.; Mishkit O.; Liu C.; Jia S.; Renfrew P. D.; Bonneau R.; Wadghiri Y. Z.; Montclare J. K. Protein-Engineered Fibers For Drug Encapsulation Traceable via 19F Magnetic Resonance. ACS Appl. Nano Mater. 2023, 6 (22), 21245–21257. 10.1021/acsanm.3c04357. PubMed DOI PMC

Sedlacek O.; Jirak D.; Galisova A.; Jager E.; Laaser J. E.; Lodge T. P.; Stepanek P.; Hruby M. 19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chem. Mater. 2018, 30 (15), 4892–4896. 10.1021/acs.chemmater.8b02115. DOI

Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H. Thermoresponsive Fluorinated Polyacrylamides with Low Cytotoxicity. Polym. Chem. 2013, 4 (7), 2219–2223. 10.1039/C2PY20747H. DOI

Kolouchova K.; Sedlacek O.; Jirak D.; Babuka D.; Blahut J.; Kotek J.; Vit M.; Trousil J.; Konefał R.; Janouskova O.; Podhorska B.; Slouf M.; Hruby M. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules 2018, 19 (8), 3515–3524. 10.1021/acs.biomac.8b00812. PubMed DOI

Babuka D.; Kolouchova K.; Hruby M.; Groborz O.; Tosner Z.; Zhigunov A.; Stepanek P. Investigation of the Internal Structure of Thermoresponsive Diblock Poly(2-Methyl-2-Oxazoline)-b-Poly[N-(2,2-Difluoroethyl)Acrylamide] Copolymer Nanoparticles. Eur. Polym. J. 2019, 121, 10930610.1016/j.eurpolymj.2019.109306. DOI

Kolouchova K.; Groborz O.; Slouf M.; Herynek V.; Parmentier L.; Babuka D.; Cernochova Z.; Koucky F.; Sedlacek O.; Hruby M.; Hoogenboom R.; Van Vlierberghe S. Thermoresponsive Triblock Copolymers as Widely Applicable 19F Magnetic Resonance Imaging Tracers. Chem. Mater. 2022, 34 (24), 10902–10916. 10.1021/acs.chemmater.2c02589. DOI

Kolouchova K.; Groborz O.; Herynek V.; Petrov O. V.; Lang J.; Dunlop D.; Parmentier L.; Szabó A.; Schaubroeck D.; Adriaensens P.; Van Vlierberghe S. Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study. Chem. Mater. 2024, 36 (1), 183–196. 10.1021/acs.chemmater.3c01574. DOI

Kolouchova K.; Groborz O.; Cernochova Z.; Skarkova A.; Brabek J.; Rosel D.; Svec P.; Starcuk Z.; Slouf M.; Hruby M. Thermo- and ROS-Responsive Self-Assembled Polymer Nanoparticle Tracers for 19F MRI Theranostics. Biomacromolecules 2021, 22 (6), 2325–2337. 10.1021/acs.biomac.0c01316. PubMed DOI

Hruby M.; Pouckova P.; Zadinova M.; Kucka J.; Lebeda O. Thermoresponsive Polymeric Radionuclide Delivery System—An Injectable Brachytherapy. Eur. J. Pharm. Sci. 2011, 42 (5), 484–488. 10.1016/j.ejps.2011.02.002. PubMed DOI

Kolouchova K.; Jirak D.; Groborz O.; Sedlacek O.; Ziolkowska N.; Vit M.; Sticova E.; Galisova A.; Svec P.; Trousil J.; Hajek M.; Hruby M. Implant-Forming Polymeric 19F MRI-Tracer with Tunable Dissolution. J. Controlled Release 2020, 327, 50–60. 10.1016/j.jconrel.2020.07.026. PubMed DOI

Jirát-Ziółkowska N.; Vít M.; Groborz O.; Kolouchová K.; Červený D.; Sedláček O.; Jirák D. Long-Term in Vivo Dissolution of Thermo- and pH-Responsive, 19 F Magnetic Resonance-Traceable and Injectable Polymer Implants. Nanoscale Adv. 2024, 6 (12), 3041–3051. 10.1039/D4NA00212A. PubMed DOI PMC

Zhang C.; Sanchez R. J. P.; Fu C.; Clayden-Zabik R.; Peng H.; Kempe K.; Whittaker A. K. Importance of Thermally Induced Aggregation on 19F Magnetic Resonance Imaging of Perfluoropolyether-Based Comb-Shaped Poly(2-Oxazoline)s. Biomacromolecules 2019, 20 (1), 365–374. 10.1021/acs.biomac.8b01549. PubMed DOI

Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly(2-Oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-Oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22 (7), 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI

Usman A.; Zhang C.; Zhao J.; Peng H.; Kurniawan N. D.; Fu C.; Hill D. J. T.; Whittaker A. K. Tuning the Thermoresponsive Properties of PEG-Based Fluorinated Polymers and Stimuli Responsive Drug Release for Switchable 19F Magnetic Resonance Imaging. Polym. Chem. 2021, 12 (38), 5438–5448. 10.1039/D1PY00602A. DOI

Zhu J.; Xiao Y.; Zhang H.; Li Y.; Yuan Y.; Yang Z.; Chen S.; Zheng X.; Zhou X.; Jiang Z.-X. Peptidic Monodisperse PEG “Combs” with Fine-Tunable LCST and Multiple Imaging Modalities. Biomacromolecules 2019, 20 (3), 1281–1287. 10.1021/acs.biomac.8b01693. PubMed DOI

Wang X.; Li Y.; Wu T.; Yang Z.; Zheng X.; Chen S.; Zhou X.; Jiang Z.-X. Quantitatively Fine-Tuning the Physicochemical and Biological Properties of Peptidic Polymers through Monodisperse PEGylation. Biomacromolecules 2020, 21 (2), 725–731. 10.1021/acs.biomac.9b01425. PubMed DOI

Zhu J.; Zhang H.; Chen K.; Li Y.; Yang Z.; Chen S.; Zheng X.; Zhou X.; Jiang Z.-X. Peptidic Monodisperse PEG “Comb” as Multifunctional “Add-On” Module for Imaging-Traceable and Thermo-Responsive Theranostics. Adv. Healthc. Mater. 2020, 9 (3), 190133110.1002/adhm.201901331. PubMed DOI

Criscione J. M.; Le B. L.; Stern E.; Brennan M.; Rahner C.; Papademetris X.; Fahmy T. M. Self-Assembly of pH-Responsive Fluorinated Dendrimer-Based Particulates for Drug Delivery and Noninvasive Imaging. Biomaterials 2009, 30 (23), 3946–3955. 10.1016/j.biomaterials.2009.04.014. PubMed DOI

Munkhbat O.; Canakci M.; Zheng S.; Hu W.; Osborne B.; Bogdanov A. A.; Thayumanavan S. 19F MRI of Polymer Nanogels Aided by Improved Segmental Mobility of Embedded Fluorine Moieties. Biomacromolecules 2019, 20 (2), 790–800. 10.1021/acs.biomac.8b01383. PubMed DOI PMC

Fu C.; Bongers A.; Wang K.; Yang B.; Zhao Y.; Wu H.; Wei Y.; Duong H. T. T.; Wang Z.; Tao L. Facile Synthesis of a Multifunctional Copolymer via a Concurrent RAFT-Enzymatic System for Theranostic Applications. Polym. Chem. 2016, 7 (3), 546–552. 10.1039/C5PY01652E. DOI

Fuchs A. V.; Bapat A. P.; Cowin G. J.; Thurecht K. J. Switchable 19F MRI Polymer Theranostics: Towards in Situ Quantifiable Drug Release. Polym. Chem. 2017, 8 (34), 5157–5166. 10.1039/C7PY00345E. DOI

Zhang Q.; Yan S.; Yan X.; Lv Y. Recent Advances in Metal-Organic Frameworks: Synthesis, Application and Toxicity. Sci. Total Environ. 2023, 902, 16594410.1016/j.scitotenv.2023.165944. PubMed DOI

Wang Q.; Yu Y.; Chang Y.; Xu X.; Wu M.; Ediriweera G. R.; Peng H.; Zhen X.; Jiang X.; Searles D. J.; Fu C.; Whittaker A. K. Fluoropolymer-MOF Hybrids with Switchable Hydrophilicity for 19F MRI-Monitored Cancer Therapy. ACS Nano 2023, 17 (9), 8483–8498. 10.1021/acsnano.3c00694. PubMed DOI

Steppan C. G.; Simon L.; Blackwood C.; Emrick T. Sulfobetaine Zwitterions with Embedded Fluorocarbons: Synthesis and Interfacial Properties. ACS Macro Lett. 2024, 13, 761–767. 10.1021/acsmacrolett.4c00198. PubMed DOI

Evans S. M.; Koch C. J. Prognostic Significance of Tumor Oxygenation in Humans. Cancer Lett. 2003, 195 (1), 1–16. 10.1016/S0304-3835(03)00012-0. PubMed DOI

Parhami P.; Fung B. M. Fluorine-19 Relaxation Study of Perfluoro Chemicals as Oxygen Carriers. J. Phys. Chem. 1983, 87 (11), 1928–1931. 10.1021/j100234a020. DOI

Taylor N. G.; Chung S. H.; Kwansa A. L.; Johnson R. R. III; Teator A. J.; Milliken N. J. B.; Koshlap K. M.; Yingling Y. G.; Lee Y. Z.; Leibfarth F. A. Partially Fluorinated Copolymers as Oxygen Sensitive 19F MRI Agents. Chem. – Eur. J. 2020, 26 (44), 9982–9990. 10.1002/chem.202001505. PubMed DOI

Lee A. L.; Gee C. T.; Weegman B. P.; Einstein S. A.; Juelfs A. R.; Ring H. L.; Hurley K. R.; Egger S. M.; Swindlehurst G.; Garwood M.; Pomerantz W. C. K.; Haynes C. L. Oxygen Sensing with Perfluorocarbon-Loaded Ultraporous Mesostructured Silica Nanoparticles. ACS Nano 2017, 11 (6), 5623–5632. 10.1021/acsnano.7b01006. PubMed DOI PMC

Ouwerkerk R.; Bleich K. B.; Gillen J. S.; Pomper M. G.; Bottomley P. A. Tissue Sodium Concentration in Human Brain Tumors as Measured with 23Na MR Imaging. Radiology 2003, 227 (2), 529–537. 10.1148/radiol.2272020483. PubMed DOI

Zhang C.; Peng H.; Whittaker A. K. NMR Investigation of Effect of Dissolved Salts on the Thermoresponsive Behavior of Oligo(Ethylene Glycol)-Methacrylate-Based Polymers. J. Polym. Sci. Part Polym. Chem. 2014, 52 (16), 2375–2385. 10.1002/pola.27252. DOI

Zhang C.; Moonshi S. S.; Peng H.; Puttick S.; Reid J.; Bernardi S.; Searles D. J.; Whittaker A. K. Ion-Responsive 19F MRI Contrast Agents for the Detection of Cancer Cells. ACS Sens. 2016, 1 (6), 757–765. 10.1021/acssensors.6b00216. DOI

Gianolio E.; Napolitano R.; Fedeli F.; Arena F.; Aime S. Poly-β-Cyclodextrin Based Platform for pH Mapping via a Ratiometric 19F/1H MRI Method. Chem. Commun. 2009, (40), 6044–6046. 10.1039/b914540k. PubMed DOI

Deirram N.; Zhang C.; Kermaniyan S. S.; Johnston A. P. R.; Such G. K. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019, 40 (10), 180091710.1002/marc.201800917. PubMed DOI

Oishi M.; Sumitani S.; Nagasaki Y. On–Off Regulation of 19F Magnetic Resonance Signals Based on pH-Sensitive PEGylated Nanogels for Potential Tumor-Specific Smart 19F MRI Probes. Bioconjugate Chem. 2007, 18 (5), 1379–1382. 10.1021/bc7002154. PubMed DOI

Oishi M.; Sumitani S.; Bronich T. K.; Kabanov A. V.; Boska M. D.; Nagasaki Y. Novel 19F MRS/I Nanoprobe Based on pH-Responsive PEGylated Nanogel: pH-Dependent 19F Magnetic Resonance Studies. Chem. Lett. 2009, 38 (2), 128–129. 10.1246/cl.2009.128. DOI

Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. pH-Responsive Star Polymer Nanoparticles: Potential 19F MRI Contrast Agents for Tumour-Selective Imaging. Polym. Chem. 2013, 4 (16), 4480–4489. 10.1039/c3py00654a. DOI

Wang K.; Peng H.; Thurecht K. J.; Puttick S.; Whittaker A. K. Biodegradable Core Crosslinked Star Polymer Nanoparticles as 19F MRI Contrast Agents for Selective Imaging. Polym. Chem. 2014, 5 (5), 1760–1771. 10.1039/C3PY01311A. DOI

Zalewski M.; Janasik D.; Kapała A.; Minoshima M.; Sugihara F.; Raj W.; Pietrasik J.; Kikuchi K.; Krawczyk T. pH-Sensitive Polymethacrylates as Potential Contrast Agents in 19F MRI. Macromol. Chem. Phys. 2022, 223 (14), 220002710.1002/macp.202200027. DOI

Zhang C.; Li L.; Han F. Y.; Yu X.; Tan X.; Fu C.; Xu Z. P.; Whittaker A. K. Integrating Fluorinated Polymer and Manganese-Layered Double Hydroxide Nanoparticles as pH-Activated 19F MRI Agents for Specific and Sensitive Detection of Breast Cancer. Small 2019, 15 (36), 190230910.1002/smll.201902309. PubMed DOI

Huo M.; Yuan J.; Tao L.; Wei Y. Redox-Responsive Polymers for Drug Delivery: From Molecular Design to Applications. Polym. Chem. 2014, 5 (5), 1519–1528. 10.1039/C3PY01192E. DOI

Wang P.; Gong Q.; Hu J.; Li X.; Zhang X. Reactive Oxygen Species (ROS)-Responsive Prodrugs, Probes, and Theranostic Prodrugs: Applications in the ROS-Related Diseases. J. Med. Chem. 2021, 64 (1), 298–325. 10.1021/acs.jmedchem.0c01704. PubMed DOI

Criado-Gonzalez M.; Mecerreyes D. Thioether-Based ROS Responsive Polymers for Biomedical Applications. J. Mater. Chem. B 2022, 10 (37), 7206–7221. 10.1039/D2TB00615D. PubMed DOI

Tao W.; He Z. ROS-Responsive Drug Delivery Systems for Biomedical Applications. Asian J. Pharm. Sci. 2018, 13 (2), 101–112. 10.1016/j.ajps.2017.11.002. PubMed DOI PMC

Huang P.; Guo W.; Yang G.; Song H.; Wang Y.; Wang C.; Kong D.; Wang W. Fluorine Meets Amine: Reducing Microenvironment-Induced Amino-Activatable Nanoprobes for 19F-Magnetic Resonance Imaging of Biothiols. ACS Appl. Mater. Interfaces 2018, 10 (22), 18532–18542. 10.1021/acsami.8b03764. PubMed DOI

Fu C.; Tang J.; Pye A.; Liu T.; Zhang C.; Tan X.; Han F.; Peng H.; Whittaker A. K. Fluorinated Glycopolymers as Reduction-Responsive 19F MRI Agents for Targeted Imaging of Cancer. Biomacromolecules 2019, 20 (5), 2043–2050. 10.1021/acs.biomac.9b00241. PubMed DOI

Li A.; Li L.; Liu X.; Chen D.; Fan Y.; Lin H.; Gao J. Deep-Tissue Real-Time Imaging of Drug-Induced Liver Injury with Peroxynitrite-Responsive 19F MRI Nanoprobes. Chem. Commun. 2021, 57 (75), 9622–9625. 10.1039/D1CC03913J. PubMed DOI

Alhaidari L. M.; Spain S. G. Synthesis of 5-Fluorouracil Polymer Conjugate and 19F NMR Analysis of Drug Release for MRI Monitoring. Polymers 2023, 15 (7), 1778.10.3390/polym15071778. PubMed DOI PMC

Buzhor M.; Avram L.; Frish L.; Cohen Y.; Amir R. J. Fluorinated Smart Micelles as Enzyme-Responsive Probes for 19F-Magnetic Resonance. J. Mater. Chem. B 2016, 4 (18), 3037–3042. 10.1039/C5TB02445E. PubMed DOI

Fu C.; Herbst S.; Zhang C.; Whittaker A. K. Polymeric 19F MRI Agents Responsive to Reactive Oxygen Species. Polym. Chem. 2017, 8 (31), 4585–4595. 10.1039/C7PY00986K. DOI

Li Y.; Liu J.; He J.; Dey A.; Bui V. D.; Park J. H. Recent Advances in Stimuli-Responsive Self-Immolative Polymers for Drug Delivery and Molecular Imaging. Chem. Mater. 2024, 36 (9), 4054–4077. 10.1021/acs.chemmater.4c00583. DOI

Ding Z.; Cen J.; Wu Y.; Zhong K.; Liu G.; Hu J.; Liu S. Self-Immolative Nanoparticles for Stimuli-Triggered Activation, Covalent Trapping and Accumulation of in Situ Generated Small Molecule Theranostic Fragments. Giant 2020, 1, 10001210.1016/j.giant.2020.100012. DOI

Tang X.; Gong X.; Li A.; Lin H.; Peng C.; Zhang X.; Chen X.; Gao J. Cascaded Multiresponsive Self-Assembled 19F MRI Nanoprobes with Redox-Triggered Activation and NIR-Induced Amplification. Nano Lett. 2020, 20 (1), 363–371. 10.1021/acs.nanolett.9b04016. PubMed DOI

Jiang Y.; Luo X.; Chen L.; Lin H.; Gao J. Multicolor 19F Magnetic Resonance Imaging: A Promising Medical Technique for in Vivo Visualization of Multiple Biological Targets. Fundam. Res. 2023, 3 (4), 529–533. 10.1016/j.fmre.2022.10.016. PubMed DOI PMC

Zhu X.; Xiong H.; Wang S.; Li Y.; Chi J.; Wang X.; Li T.; Zhou Q.; Gao J.; Shi S. Fluorinated Ionic Liquid Based Multicolor 19F MRI Nanoprobes for In Vivo Sensing of Multiple Biological Targets. Adv. Healthc. Mater. 2022, 11 (8), 210207910.1002/adhm.202102079. PubMed DOI

Akazawa K.; Sugihara F.; Nakamura T.; Matsushita H.; Mukai H.; Akimoto R.; Minoshima M.; Mizukami S.; Kikuchi K. Perfluorocarbon-Based 19F MRI Nanoprobes for In Vivo Multicolor Imaging. Angew. Chem. 2018, 130 (51), 16984–16989. 10.1002/ange.201810363. PubMed DOI PMC

Li A.; Luo X.; Li L.; Chen D.; Liu X.; Yang Z.; Yang L.; Gao J.; Lin H. Activatable Multiplexed 19F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Anal. Chem. 2021, 93 (49), 16552–16561. 10.1021/acs.analchem.1c03744. PubMed DOI

Chang Y.; Xu X.; Zhang R.; Peng H.; Liu K.; Whittaker A. K.; Fu C. Oxidation-Responsive Polymeric Fluorinated Nanoparticles Prepared by Polymerization-Induced Self-Assembly. Macromolecules 2024, 57 (1), 263–271. 10.1021/acs.macromol.3c01895. DOI

Švec P.; Petrov O. V.; Lang J.; Štěpnička P.; Groborz O.; Dunlop D.; Blahut J.; Kolouchová K.; Loukotová L.; Sedláček O.; Heizer T.; Tošner Z.; Šlouf M.; Beneš H.; Hoogenboom R.; Hrubý M. Fluorinated Ferrocene Moieties as a Platform for Redox-Responsive Polymer 19F MRI Theranostics. Macromolecules 2022, 55 (2), 658–671. 10.1021/acs.macromol.1c01723. DOI

Couturaud B.; Houston Z. H.; Cowin G. J.; Prokeš I.; Foster J. C.; Thurecht K. J.; O’Reilly R. K. Supramolecular Fluorine Magnetic Resonance Spectroscopy Probe Polymer Based on Passerini Bifunctional Monomer. ACS Macro Lett. 2019, 8 (11), 1479–1483. 10.1021/acsmacrolett.9b00626. PubMed DOI

Huang X.; Huang G.; Zhang S.; Sagiyama K.; Togao O.; Ma X.; Wang Y.; Li Y.; Soesbe T. C.; Sumer B. D.; Takahashi M.; Sherry A. D.; Gao J. Multi-Chromatic pH-Activatable 19F-MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemical-Shift Barcodes. Angew. Chem., Int. Ed. 2013, 52 (31), 8074–8078. 10.1002/anie.201301135. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...