Tento návrh jednoduché metody vizualizace daktyloskopických stop na základě elektrochemické depozice polyfenazinových barviv (polyneutrální červeně a polytoluidinové modři) z neutrálního prostředí, kdy je minimalizováno poškození genetické informace, by mohl usnadnit snímání otisků prstů z nábojnic ve forenzní praxi. Parametry elektrochemických metod cyklické voltametrie a chronoamperometrie (základní elektrolyt, aplikovaný potenciál, doba depozice nebo potenciálový rozsah a počet cyklů) byly postupně optimalizovány, dokud nebyl otisk dostatečně viditelný. Morfologie a struktura modifikovaných povrchů daktyloskopických stop a polyfenazinových filmů byly studovány pomocí skenovací elektronové mikroskopie. Je předpokládán další rozvoj metody a především aplikace metody na vystřelené nábojnice.
A simple fingerprint visualization method based on the electrochemical deposition of polytoluidine blue (PTB) and polyneutral red (PNR) from a neutral environment with the possibility of minimal damage to the genetic information could facilitate fingerprinting from cartridge cases in forensic practice. The parameters of both visualization methods (supporting electrolyte, applied potential, deposition time or potential range, and number of cycles) were optimized until the imprint was sufficiently visible. The morphology and structure of modified fingerprint surfaces and polyphenazine films were studied using scanning electron microscopy. It is assumed that the method will be applied in the future to fired cartridges, which are crucial in forensics.
Nano-sized carriers are widely studied as suitable candidates for the advanced delivery of various bioactive molecules such as drugs and diagnostics. Herein, the development of long-circulating stimuli-responsive polymer nanoprobes tailored for the fluorescently-guided surgery of solid tumors is reported. Nanoprobes are designed as long-circulating nanosystems preferably accumulated in solid tumors due to the Enhanced permeability and retention effect, so they act as a tumor microenvironment-sensitive activatable diagnostic. This study designs polymer probes differing in the structure of the spacer between the polymer carrier and Cy7 by employing pH-sensitive spacers, oligopeptide spacers susceptible to cathepsin B-catalyzed enzymatic hydrolysis, and non-degradable control spacer. Increased accumulation of the nanoprobes in the tumor tissue coupled with stimuli-sensitive release behavior and subsequent activation of the fluorescent signal upon dye release facilitated favorable tumor-to-background ratio, a key feature for fluorescence-guided surgery. The probes show excellent diagnostic potential for the surgical removal of intraperitoneal metastasis and orthotopic head and neck tumors with very high efficacy and accuracy. In addition, the combination of macroscopic resection followed by fluorescence-guided surgery using developed probes enable the identification and resection of most of the CAL33 intraperitoneal metastases with total tumor burden reduced to 97.2%.
- MeSH
- chytré polymery * MeSH
- fluorescence MeSH
- fluorescenční barviva chemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- nádory hlavy a krku * diagnostické zobrazování chirurgie MeSH
- polymery MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Klíčová slova
- nanosondy, označení nádoru, hranice nádoru,
- MeSH
- chytré polymery MeSH
- lidé MeSH
- nádory * chirurgie MeSH
- nanotechnologie metody MeSH
- Check Tag
- lidé MeSH
Smart hydrogels are special type of hydrogels that undergo solution-gelation transition in response to alterations in the environment. Solution-gel transformation is brought about through either physical or chemical cross-linking that occur between the hydrogel chains. Various stimulating factors have been identified to be responsible for the change in the physical state of the intelligent hydrogel. The most important triggering factors are the temperature, pH, ions, electrical signalling, magnetic field, glucose, light and others. Each of these stimulating factors can trigger the swelling of the hydrogel through unique mechanism. Many of these triggering factors are characteristics of the biological systems which make the smart polymers quite beneficial for different biomedical applications. Numerous natural and synthetic polymers have been distinguished to act as smart materials. These polymers impressed the scientists to use them in many biomedical and industrial applications such as drug delivery systems, gene therapy applications, tissue engineering and many other applications.