Internal Structure of Thermoresponsive Physically Crosslinked Nanogel of Poly[N-(2-hydroxypropyl)methacrylamide]-Block-Poly[N-(2,2-difluoroethyl)acrylamide], Prominent 19F MRI Tracer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC19032
Ministerstvo Školství, Mládeže a Tělovýchovy
19-01602S
Czech Science Foundation
602119
Grant Agency of Charles University
766119
Grant Agency of Charles University
654000
EU Horizon 2020 programme, SINE2020
PubMed
33182714
PubMed Central
PMC7698257
DOI
10.3390/nano10112231
PII: nano10112231
Knihovny.cz E-zdroje
- Klíčová slova
- PDFEA, PHPMA, diblock copolymer, fluorine-19, magnetic resonance imaging, self-assembly,
- Publikační typ
- časopisecké články MeSH
Fluorine-19 MRI is a promising noninvasive diagnostic method. However, the absence of a nontoxic fluorine-19 MRI tracer that does not suffer from poor biodistribution as a result of its strong fluorophilicity is a constant hurdle in the widespread applicability of this otherwise versatile diagnostic technique. The poly[N-(2-hydroxypropyl)methacrylamide]-block-poly[N-(2,2-difluoroethyl)acrylamide] thermoresponsive copolymer was proposed as an alternative fluorine-19 MRI tracer capable of overcoming such shortcomings. In this paper, the internal structure of self-assembled particles of this copolymer was investigated by various methods including 1D and 2D NMR, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The elucidated structure appears to be that of a nanogel with greatly swollen hydrophilic chains and tightly packed thermoresponsive chains forming a network within the nanogel particles, which become more hydrophobic with increasing temperature. Its capacity to provide a measurable fluorine-19 NMR signal in its aggregated state at human body temperature was also investigated and confirmed. This capacity stems from the different fluorine-19 nuclei relaxation properties compared to those of hydrogen-1 nuclei.
Zobrazit více v PubMed
Hashemi R.H., Bradley W.G., Lisanti C.J. MRI: The Basics. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2012. DOI
Ruiz-Cabello J., Barnett B.P., Bottomley P.A., Bulte J.W.M. Fluorine (19F) MRS and MRI in Biomedicine. NMR Biomed. 2011;24:114–129. doi: 10.1002/nbm.1570. PubMed DOI PMC
Jirak D., Galisova A., Kolouchova K., Babuka D., Hruby M. Fluorine Polymer Probes for Magnetic Resonance Imaging: Quo Vadis? Magn. Reson. Mater. Phys. Biol. Med. 2019;32:173–185. doi: 10.1007/s10334-018-0724-6. PubMed DOI PMC
Ahrens E.T., Rothbächer U., Jacobs R.E., Fraser S.E. A Model for MRI Contrast Enhancement Using T1 Agents. Proc. Natl. Acad. Sci. USA. 1998;95:8443–8448. doi: 10.1073/pnas.95.15.8443. PubMed DOI PMC
Ahrens E.T., Helfer B.M., O’Hanlon C.F., Schirda C. Clinical Cell Therapy Imaging Using a Perfluorocarbon Tracer and Fluorine-19 MRI. Magn. Reson. Med. 2014;72:1696–1701. doi: 10.1002/mrm.25454. PubMed DOI PMC
Staal X., Koshkina O., Srinivas M. Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals. Academic Press; Cambridge, MA, USA: 2019. 11-In Vivo 19-Fluorine Magnetic Resonance Imaging; pp. 397–424. DOI
Fox M.S., Gaudet J.M., Foster P.J. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. Magn. Reson. Insights. 2015;8(Suppl. 1):53–67. doi: 10.4137/MRI.S23559. PubMed DOI PMC
Gillis E.P., Eastman K.J., Hill M.D., Donnelly D.J., Meanwell N.A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015;58:8315–8359. doi: 10.1021/acs.jmedchem.5b00258. PubMed DOI
van Heeswijk R.B., Pilloud Y., Flögel U., Schwitter J., Stuber M. Fluorine-19 Magnetic Resonance Angiography of the Mouse. PLoS ONE. 2012;7:e42236. doi: 10.1371/annotation/533f969f-0337-4145-906a-565cb11bfa8a. PubMed DOI PMC
Kolouchova K., Sedlacek O., Jirak D., Babuka D., Blahut J., Kotek J., Vit M., Trousil J., Konefał R., Janouskova O., et al. Self-Assembled Thermoresponsive Polymeric Nanogels for 19F MR Imaging. Biomacromolecules. 2018;19:3515–3524. doi: 10.1021/acs.biomac.8b00812. PubMed DOI
Kolouchova K., Jirak D., Groborz O., Sedlacek O., Ziolkowska N., Vit M., Sticova E., Galisova A., Svec P., Trousil J., et al. Implant-Forming Polymeric 19F MRI-Tracer with Tunable Dissolution. J. Control. Release. 2020;327:50–60. doi: 10.1016/j.jconrel.2020.07.026. PubMed DOI
Babuka D., Kolouchova K., Hruby M., Groborz O., Tosner Z., Zhigunov A., Stepanek P. Investigation of the Internal Structure of Thermoresponsive Diblock Poly(2-Methyl-2-Oxazoline)-b-Poly[N-(2,2-Difluoroethyl)Acrylamide] Copolymer Nanoparticles. Eur. Polym. J. 2019;121:109306. doi: 10.1016/j.eurpolymj.2019.109306. DOI
Sedlacek O., Jirak D., Galisova A., Jager E., Laaser J.E., Lodge T.P., Stepanek P., Hruby M. 19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chem. Mater. 2018;30:4892–4896. doi: 10.1021/acs.chemmater.8b02115. DOI
Murthy S.K. Nanoparticles in Modern Medicine: State of the Art and Future Challenges. Int. J. Nanomed. 2007;2:129–141. PubMed PMC
Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Kim S., Lim Y.T., Soltesz E.G., De Grand A.M., Lee J., Nakayama A., Parker J.A., Mihaljevic T., Laurence R.G., Dor D.M., et al. Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nat. Biotechnol. 2004;22:93–97. doi: 10.1038/nbt920. PubMed DOI PMC
Akerman M.E., Chan W.C.W., Laakkonen P., Bhatia S.N., Ruoslahti E. Nanocrystal Targeting in Vivo. Proc. Natl. Acad. Sci. USA. 2002;99:12617–12621. doi: 10.1073/pnas.152463399. PubMed DOI PMC
Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004;22:969–976. doi: 10.1038/nbt994. PubMed DOI
Huh Y.-M., Jun Y., Song H.-T., Kim S., Choi J., Lee J.-H., Yoon S., Kim K., Shin J.-S., Suh J.-S., et al. In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrystals. J. Am. Chem. Soc. 2005;127:12387–12391. doi: 10.1021/ja052337c. PubMed DOI
Tiwari G., Tiwari R., Sriwastawa B., Bhati L., Pandey S., Pandey P., Bannerjee S.K. Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012;2:2–11. doi: 10.4103/2230-973X.96920. PubMed DOI PMC
Allen T.M., Cullis P.R. Drug Delivery Systems: Entering the Mainstream. Science. 2004;303:1818–1822. doi: 10.1126/science.1095833. PubMed DOI
Duncan R. The Dawning Era of Polymer Therapeutics. Nat. Rev. Drug Discov. 2003;2:347–360. doi: 10.1038/nrd1088. PubMed DOI
De Jaeghere F., Allémann E., Kubel F., Galli B., Cozens R., Doelker E., Gurny R. Oral Bioavailability of a Poorly Water Soluble HIV-1 Protease Inhibitor Incorporated into PH-Sensitive Particles: Effect of the Particle Size and Nutritional State. J. Control. Release. 2000;68:291–298. doi: 10.1016/S0168-3659(00)00272-8. PubMed DOI
Ludwig A. The Use of Mucoadhesive Polymers in Ocular Drug Delivery. Adv. Drug Deliv. Rev. 2005;57:1595–1639. doi: 10.1016/j.addr.2005.07.005. PubMed DOI
Kumar M., Kong X., Behera A.K., Hellermann G.R., Lockey R.F., Mohapatra S.S. Chitosan IFN-Gamma-PDNA Nanoparticle (CIN) Therapy for Allergic Asthma. Genet. Vaccines Ther. 2003;1:3. doi: 10.1186/1479-0556-1-3. PubMed DOI PMC
Popovic N., Brundin P. Therapeutic Potential of Controlled Drug Delivery Systems in Neurodegenerative Diseases. Int. J. Pharm. 2006;314:120–126. doi: 10.1016/j.ijpharm.2005.09.040. PubMed DOI
Schlachetzki F., Zhang Y., Boado R.J., Pardridge W.M. Gene Therapy of the Brain: The Trans-Vascular Approach. Neurology. 2004;62:1275–1281. doi: 10.1212/01.WNL.0000120551.38463.D9. PubMed DOI
Pridgen E.M., Langer R., Farokhzad O.C. Biodegradable, Polymeric Nanoparticle Delivery Systems for Cancer Therapy. Nanomedicine. 2007;2:669–680. doi: 10.2217/17435889.2.5.669. PubMed DOI
Yoo D., Lee J.H., Shin T.H., Cheon J. Theranostic Magnetic Nanoparticles. Acc. Chem. Res. 2011 doi: 10.1021/ar200085c. PubMed DOI
Bamrungsap S., Zhao Z., Chen T., Wang L., Li C., Fu T., Tan W. Nanotechnology in Therapeutics: A Focus on Nanoparticles as a Drug Delivery System. Nanomedicine. 2012;7:1253–1271. doi: 10.2217/nnm.12.87. PubMed DOI
Nakayama M., Okano T. Intelligent Thermoresponsive Polymeric Micelles for Targeted Drug Delivery. J. Drug Deliv. Sci. Technol. 2006;16:35–44. doi: 10.1016/S1773-2247(06)50005-X. DOI
Ghosh S. Recent Research and Development in Synthetic Polymer-Based Drug Delivery Systems. J. Chem. Res. 2004;2004:241–246. doi: 10.3184/0308234041209158. DOI
Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010;49:6288–6308. doi: 10.1002/anie.200902672. PubMed DOI
Bauer M., Lautenschlaeger C., Kempe K., Tauhardt L., Schubert U.S., Fischer D. Poly(2-Ethyl-2-Oxazoline) as Alternative for the Stealth Polymer Poly(Ethylene Glycol): Comparison of in Vitro Cytotoxicity and Hemocompatibility. Macromol. Biosci. 2012;12:986–998. doi: 10.1002/mabi.201200017. PubMed DOI
Tucker B.S., Sumerlin B.S. Poly(N-(2-Hydroxypropyl) Methacrylamide)-Based Nanotherapeutics. Polym. Chem. 2014;5:1566–1572. doi: 10.1039/C3PY01279D. DOI
De la Rosa V.R. Poly(2-Oxazoline)s as Materials for Biomedical Applications. J. Mater. Sci. Mater. Med. 2014;25:1211–1225. doi: 10.1007/s10856-013-5034-y. PubMed DOI
Sedláček O., Černoch P., Kučka J., Konefal R., Štěpánek P., Vetrík M., Lodge T.P., Hrubý M. Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best? Langmuir. 2016;32:6115–6122. doi: 10.1021/acs.langmuir.6b01527. PubMed DOI
Blanazs A., Armes S.P., Ryan A.J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009;30:267–277. doi: 10.1002/marc.200800713. PubMed DOI
Jakeš J. Regularized Positive Exponential Sum (REPES) Program-A Way of Inverting Laplace Transform Data Obtained by Dynamic Light Scattering. Collect. Czech. Chem. Commun. 1995;60:1781–1797. doi: 10.1135/cccc19951781. DOI
Štěpánek P. Chapter 4: Data Analysis in Dynamic Light Scattering. In: Brown W., editor. Dynamic Light Scattering. Oxford science publications; Oxford, UK: 1993.
Kieffer J., Karkoulis D. PyFAI, a Versatile Library for Azimuthal Regrouping. J. Phys. Conf. Ser. 2013;425:202012. doi: 10.1088/1742-6596/425/20/202012. DOI
Breßler I., Kohlbrecher J., Thünemann A.F. SASfit: A Tool for Small-Angle Scattering Data Analysis Using a Library of Analytical Expressions. J. Appl. Crystallogr. 2015;48:1587–1598. doi: 10.1107/S1600576715016544. PubMed DOI PMC
Doucet M., Cho J.H., Alina G., Bakker J., Bouwman W., Butler P., Campbell K., Gonzales M., Heenan R., Jackson A., et al. SasView Version 4.2. Zenodo; Berlin, Germany: 2018. DOI
Findeisen M., Brand T., Berger S. A 1H-NMR Thermometer Suitable for Cryoprobes. Magn. Reson. Chem. 2006;45:175–178. doi: 10.1002/mrc.1941. PubMed DOI
Wishart D.S., Bigam C.G., Yao J., Abildgaard F., Dyson H.J., Oldfield E., Markley J.L., Sykes B.D. 1H, 13C and 15N Chemical Shift Referencing in Biomolecular NMR. J. Biomol. NMR. 1995;6:135–140. doi: 10.1007/BF00211777. PubMed DOI
Cano K.E., Smith M.A., Shaka A.J. Adjustable, Broadband, Selective Excitation with Uniform Phase. J. Magn. Reson. 2002;155:131–139. doi: 10.1006/jmre.2002.2506. PubMed DOI
Wang X., Wu C. Light-Scattering Study of Coil-to-Globule Transition of a Poly(N-Isopropylacrylamide) Chain in Deuterated Water. Macromolecules. 1999;32:4299–4301. doi: 10.1021/ma9902450. DOI
Kreuzer L.P., Widmann T., Hohn N., Wang K., Bießmann L., Peis L., Moulin J.-F., Hildebrand V., Laschewsky A., Papadakis C.M., et al. Swelling and Exchange Behavior of Poly(Sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules. 2019;52:3486–3498. doi: 10.1021/acs.macromol.9b00443. DOI
Sun J., Peng Y., Chen Y., Liu Y., Deng J., Lu L., Cai Y. Effect of Molecular Structure on Thermoresponsive Behaviors of Pyrrolidone-Based Water-Soluble Polymers. Macromolecules. 2010;43:4041–4049. doi: 10.1021/ma100133q. DOI
Luo C., Fu W., Li Z., Zhao B. Multi-Responsive Polymethacrylamide Homopolymers Derived from Tertiary Amine-Modified l-Alanine. Polymer. 2016;101:319–327. doi: 10.1016/j.polymer.2016.08.091. DOI
Lodge T.P., Bang J., Hanley K.J., Krocak J., Dahlquist S., Sujan B., Ott J. Origins of Anomalous Micellization in Diblock Copolymer Solutions. Langmuir. 2003;19:2103–2109. doi: 10.1021/la0268808. DOI