The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, metaanalýza, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
MR/J010847/1
Medical Research Council - United Kingdom
R01 DK105124
NIDDK NIH HHS - United States
R01 DK097053
NIDDK NIH HHS - United States
R01 DK119380
NIDDK NIH HHS - United States
R01 DK108805
NIDDK NIH HHS - United States
R01 MD009223
NIMHD NIH HHS - United States
RC2 DK116690
NIDDK NIH HHS - United States
U24 DK114886
NIDDK NIH HHS - United States
UH3 TR003288
NCATS NIH HHS - United States
U54 DK083912
NIDDK NIH HHS - United States
S10 OD018522
NIH HHS - United States
S10 OD026880
NIH HHS - United States
PubMed
32231244
PubMed Central
PMC7105485
DOI
10.1038/s41467-020-15383-w
PII: 10.1038/s41467-020-15383-w
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Asijci genetika MeSH
- běloši genetika MeSH
- celogenomová asociační studie * MeSH
- interferonové regulační faktory genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- membranózní glomerulonefritida diagnóza genetika imunologie MeSH
- molekulární modely MeSH
- NF-kappa B - podjednotka p50 genetika MeSH
- receptory pro fosfolipasy A2 genetika MeSH
- sekvence aminokyselin MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- interferon regulatory factor-4 MeSH Prohlížeč
- interferonové regulační faktory MeSH
- NF-kappa B - podjednotka p50 MeSH
- NFKB1 protein, human MeSH Prohlížeč
- PLA2R1 protein, human MeSH Prohlížeč
- receptory pro fosfolipasy A2 MeSH
Membranous Nephropathy (MN) is a rare autoimmune cause of kidney failure. Here we report a genome-wide association study (GWAS) for primary MN in 3,782 cases and 9,038 controls of East Asian and European ancestries. We discover two previously unreported loci, NFKB1 (rs230540, OR = 1.25, P = 3.4 × 10-12) and IRF4 (rs9405192, OR = 1.29, P = 1.4 × 10-14), fine-map the PLA2R1 locus (rs17831251, OR = 2.25, P = 4.7 × 10-103) and report ancestry-specific effects of three classical HLA alleles: DRB1*1501 in East Asians (OR = 3.81, P = 2.0 × 10-49), DQA1*0501 in Europeans (OR = 2.88, P = 5.7 × 10-93), and DRB1*0301 in both ethnicities (OR = 3.50, P = 9.2 × 10-23 and OR = 3.39, P = 5.2 × 10-82, respectively). GWAS loci explain 32% of disease risk in East Asians and 25% in Europeans, and correctly re-classify 20-37% of the cases in validation cohorts that are antibody-negative by the serum anti-PLA2R ELISA diagnostic test. Our findings highlight an unusual genetic architecture of MN, with four loci and their interactions accounting for nearly one-third of the disease risk.
2nd Division of Nephrology ASST Spedali Civili di Brescia Presidio di Montichiari Brescia Italy
3 Department of Medicine University Medical Center Hamburg Eppendorf Hamburg Germany
Arbor Research Collaborative for Health Ann Arbor MI USA
Biomedical Sciences Seoul National University College of Medicine Seoul Korea
Cannizzaro Hospital Catania Italy
Center for Population Genomic Health Icahn School of Medicine at Mount Sinai New York NY USA
Department of Anatomic Pathology University of Washington Seattle USA
Department of Biostatistics Mailman School of Public Health Columbia University New York NY USA
Department of Genetics and Genomic Sciences Mount Sinai Health System New York NY USA
Department of Medical Biology Istanbul School of Medicine Istanbul University Istanbul Turkey
Department of Medicine and Surgery University of Parma Parma Italy
Department of Medicine University of Chieti Pescara SS Annunziata Hospital Chieti Italy
Department of Nephrology and Dialysis G Brotzu Hospital Cagliari Italy
Department of Nephrology and Hypertension Friedrich Alexander Universität Erlangen Germany
Department of Nephrology Division of Medicine University College London London UK
Department of Nephrology Juntendo University Faculty of Medicine Tokyo Japan
Department of Nephrology Radboud University Medical Center Nijmegen The Netherlands
Department of Nephrology Sisli Hamidiye Etfal Training and Research Hospital Istanbul Turkey
Department of Nephrology Uludag University Faculty of Medicine Bursa Turkey
Department of Nephrology University Hospitals Leuven Leuven Belgium
Department of Nephrology University of Toronto Toronto General Hospital Toronto ON Canada
Department of Obstetrics and Gynecology ASST Spedali Civili di Brescia Brescia Italy
Department of Pediatrics Nephrology University of Michigan School of Medicine Ann Arbor MI USA
Division of Nephrology and Hypertension Mayo Clinic Rochester MN USA
Division of Nephrology Department of Medicine University of Michigan Ann Arbor MI USA
Division of Nephrology Dialysis Transplantation IRCCS Giannina Gaslini Genoa Italy
Faculty of Biology Medicine Health University of Manchester Manchester UK
Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1155 Paris France
Institute of Biochemistry and Biophysics Polish Academy of Sciences Warsaw Poland
Institute of Nephrology Peking University Beijing China
Institute on Aging Seoul National University College of Medicine Seoul Korea
Internal Medicine Seoul National University College of Medicine Seoul Korea
Kidney Research Institute Seoul National University College of Medicine Seoul Korea
Nephrology Clinic Haseki Training and Research Hospital Istanbul Turkey
Peking Tsinghua Center for Life Sciences Beijing China
Renal Division Department of Medicine Peking University 1st Hospital Beijing China
Renal Unit Department of Medicine University of Verona Verona Italy
Renal Unit Royal London Hospital Barts Health Whitechapel London UK
S Andrea Hospital La Spezia Italy
San Giovanni Bosco Hospital and University of Turin Turin Italy
San Raffaele Hospital Milan Italy
Sandro Pertini Hospital Rome Italy
Sorbonne Université Pierre and Marie Curie University Paris 06 Paris France
Unit of Nephrology and Dialysis ASL TO4 Cirié Turin Italy
Zobrazit více v PubMed
Glassock RJ. Diagnosis and natural course of membranous nephropathy. Semin Nephrol. 2003;23:324–332. doi: 10.1016/S0270-9295(03)00049-4. PubMed DOI
Debiec H, et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 2002;346:2053–2060. doi: 10.1056/NEJMoa012895. PubMed DOI
Beck LH, Jr., et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 2009;361:11–21. doi: 10.1056/NEJMoa0810457. PubMed DOI PMC
Glassock RJ. The pathogenesis of membranous nephropathy: evolution and revolution. Curr. Opin. Nephrol. Hypertens. 2012;21:235–242. doi: 10.1097/MNH.0b013e3283522ea8. PubMed DOI
Tomas NM, et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 2014;371:2277–2287. doi: 10.1056/NEJMoa1409354. PubMed DOI PMC
Stanescu HC, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 2011;364:616–626. doi: 10.1056/NEJMoa1009742. PubMed DOI
Wunnenburger S, et al. Associations between genetic risk variants for kidney diseases and kidney disease etiology. Sci. Rep. 2017;7:13944. doi: 10.1038/s41598-017-13356-6. PubMed DOI PMC
Gadegbeku CA, et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 2013;83:749–756. doi: 10.1038/ki.2012.428. PubMed DOI PMC
Cui Z, et al. MHC class II risk alleles and amino acid residues in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 2017;28:1651–1664. doi: 10.1681/ASN.2016020114. PubMed DOI PMC
Zhou F, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat. Genet. 2016;48:740–746. doi: 10.1038/ng.3576. PubMed DOI
Backenroth D, et al. FUN-LDA: a latent dirichlet allocation model for predicting tissue-specific functional effects of noncoding variation: methods and applications. Am. J. Hum. Genet. 2018;102:920–942. doi: 10.1016/j.ajhg.2018.03.026. PubMed DOI PMC
Consortium GT, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213. doi: 10.1038/nature24277. PubMed DOI PMC
Gillies CE, et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 2018;103:232–244. doi: 10.1016/j.ajhg.2018.07.004. PubMed DOI PMC
Sieber KB, et al. Integrated functional genomic analysis enables annotation of kidney genome-wide association study loci. J. Am. Soc. Nephrol. 2019;30:421–441. doi: 10.1681/ASN.2018030309. PubMed DOI PMC
Westra HJ, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013;45:1238–1243. doi: 10.1038/ng.2756. PubMed DOI PMC
Raj T, et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science. 2014;344:519–523. doi: 10.1126/science.1249547. PubMed DOI PMC
Astle WJ, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167:1415–1429 e19. doi: 10.1016/j.cell.2016.10.042. PubMed DOI PMC
Jostins L, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–124. doi: 10.1038/nature11582. PubMed DOI PMC
Liu JZ, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015;47:979–986. doi: 10.1038/ng.3359. PubMed DOI PMC
Mells GF, et al. Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat. Genet. 2011;43:329–332. doi: 10.1038/ng.789. PubMed DOI PMC
Cordell HJ, et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. Nat. Commun. 2015;6:8019. doi: 10.1038/ncomms9019. PubMed DOI PMC
Wu H, et al. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell. 2018;23:869–881.e8. doi: 10.1016/j.stem.2018.10.010. PubMed DOI PMC
Pattaro C, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 2016;7:10023. doi: 10.1038/ncomms10023. PubMed DOI PMC
Wuttke M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 2019;51:957–972. doi: 10.1038/s41588-019-0407-x. PubMed DOI PMC
Grumont RJ, Gerondakis S. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor kappaB. J. Exp. Med. 2000;191:1281–1292. doi: 10.1084/jem.191.8.1281. PubMed DOI PMC
Saito M, et al. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell. 2007;12:280–292. doi: 10.1016/j.ccr.2007.08.011. PubMed DOI
Boddicker RL, et al. The oncogenic transcription factor IRF4 is regulated by a novel CD30/NF-kappaB positive feedback loop in peripheral T-cell lymphoma. Blood. 2015;125:3118–3127. doi: 10.1182/blood-2014-05-578575. PubMed DOI PMC
Lake BB, et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat. Commun. 2019;10:2832. doi: 10.1038/s41467-019-10861-2. PubMed DOI PMC
Zhao B, et al. The NF-kappaB genomic landscape in lymphoblastoid B cells. Cell Rep. 2014;8:1595–1606. doi: 10.1016/j.celrep.2014.07.037. PubMed DOI PMC
Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am. J. Hum. Genet. 2011;88:294–305. doi: 10.1016/j.ajhg.2011.02.002. PubMed DOI PMC
Bobart SA, et al. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int. 2019;95:429–438. doi: 10.1016/j.kint.2018.10.021. PubMed DOI
Schmid H, et al. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes. 2006;55:2993–3003. doi: 10.2337/db06-0477. PubMed DOI
Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J. Intern. Med. 2008;263:591–596. doi: 10.1111/j.1365-2796.2008.01953.x. PubMed DOI
Schottelius AJ, Baldwin AS., Jr A role for transcription factor NF-kappa B in intestinal inflammation. Int J. Colorectal Dis. 1999;14:18–28. doi: 10.1007/s003840050178. PubMed DOI
Mezzano SA, et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int. 2001;60:1366–1377. doi: 10.1046/j.1523-1755.2001.00941.x. PubMed DOI
Mudge SJ, Paizis K, Auwardt RB, Thomas RJ, Power DA. Activation of nuclear factor-kappa B by podocytes in the autologous phase of passive Heymann nephritis. Kidney Int. 2001;59:923–931. doi: 10.1046/j.1523-1755.2001.059003923.x. PubMed DOI
Liu S, et al. Urinary messenger RNA of the receptor activator of NF-kappaB could be used to differentiate between minimal change disease and membranous nephropathy. Biomarkers. 2014;19:597–603. doi: 10.3109/1354750X.2014.956148. PubMed DOI
Bonder MJ, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 2017;49:131–138. doi: 10.1038/ng.3721. PubMed DOI
Hu X, et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 2015;47:898–905. doi: 10.1038/ng.3353. PubMed DOI PMC
Raychaudhuri S, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012;44:291–296. doi: 10.1038/ng.1076. PubMed DOI PMC
Xu X, et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 2018;9:4800. doi: 10.1038/s41467-018-07260-4. PubMed DOI PMC
Sekula P, et al. Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrol. Dial. Transpl. 2017;32:325–332. doi: 10.1093/ndt/gfw001. PubMed DOI PMC
Nevalainen TJ, Graham GG, Scott KF. Antibacterial actions of secreted phospholipases A2. Review. Biochim Biophys. Acta. 2008;1781:1–9. doi: 10.1016/j.bbalip.2007.12.001. PubMed DOI
Morri H, Ozaki M, Watanabe Y. 5’-flanking region surrounding a human cytosolic phospholipase A2 gene. Biochem. Biophys. Res. Commun. 1994;205:6–11. doi: 10.1006/bbrc.1994.2621. PubMed DOI
Devlin B, Roeder K, Bacanu SA. Unbiased methods for population-based association studies. Genet. Epidemiol. 2001;21:273–284. doi: 10.1002/gepi.1034. PubMed DOI
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC
Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 2009;33:79–86. doi: 10.1002/gepi.20359. PubMed DOI
Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E. Identifying causal variants at loci with multiple signals of association. Genetics. 2014;198:497–508. doi: 10.1534/genetics.114.167908. PubMed DOI PMC
Jia X, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE. 2013;8:e64683. doi: 10.1371/journal.pone.0064683. PubMed DOI PMC
Pillai NE, et al. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum. Mol. Genet. 2014;23:4443–4451. doi: 10.1093/hmg/ddu149. PubMed DOI
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603. PubMed DOI PMC
Ju W, et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 2013;23:1862–1873. doi: 10.1101/gr.155697.113. PubMed DOI PMC
Rinschen MM, et al. A multi-layered quantitative in vivo expression atlas of the podocyte unravels kidney disease candidate genes. Cell Rep. 2018;23:2495–2508. doi: 10.1016/j.celrep.2018.04.059. PubMed DOI PMC
Steyerberg EW, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21:128–138. doi: 10.1097/EDE.0b013e3181c30fb2. PubMed DOI PMC
Levey AS, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006;145:247–254. doi: 10.7326/0003-4819-145-4-200608150-00004. PubMed DOI
Yang J, et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. doi: 10.1038/ng.608. PubMed DOI PMC
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011;88:76–82. doi: 10.1016/j.ajhg.2010.11.011. PubMed DOI PMC
ClinicalTrials.gov
NCT01180036