Relationship of selected properties of Cambisols to altitude and forest ecosystems of four vegetation grades
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38807865
PubMed Central
PMC11130668
DOI
10.1016/j.heliyon.2024.e31153
PII: S2405-8440(24)07184-6
Knihovny.cz E-zdroje
- Klíčová slova
- Altitude, Cambisol taxa, Forest, Principal component analysis, Soil characteristics, Vegetation unit,
- Publikační typ
- časopisecké články MeSH
Currently, little is known about the spatial variability of significant soil properties and their relationships to forest ecosystems of different vegetation grades. This work evaluates the variability of the properties of the upper layer of Cambisol taxa and their relationship to altitude and forest ecosystems of 2nd to 5th forest vegetation grades selected in the Western Carpathians using PCA and regression analysis. The content of clay, total carbon and total nitrogen, humus, energy, and ash in the soils varied between 5.43 and 11.53 %, 21-65 mg g-1, 1.9-4.7 mg g-1, 36-112 mg g-1, 438.4-5845.7 J g-1 and 852.9-946.3 mg g-1, and C/N, pHH2O, and pHKCl values ranged between 11.2 and 16.7, 4.0-5.8 and 3.1-4.6. PCA showed that EAC in the 3rd oak-beech vegetation grade had significantly higher pH values and significantly lower energy content, ESC in the 4th beech vegetation grade had a significantly higher ash content and a significantly lower energy content, and DC in the 5th fir-beech vegetation grade had a significantly higher content of Ct, Nt, and humus. Linear regression revealed a strong negative correlation between the energy content and soil reaction (R2 for pHH2O = 0.48; R2 for pHKCl = 0.38) for all Cambisol taxa. Ct content and ash show a strong negative correlation (R2 = 0.78). The positive relationship between altitude and FVGs was found only for the soil Ct (R2 = 0.87), Nt (R2 = 0.81), and humus content (R2 = 0.87). A strong negative linear relationship between altitude and FVGs showed the ash content (R2 = 0.77). In turn, the oscillatory, polynomial course had a relationship between the clay content (R2 = 0.65) and energy (R2 = 0.75) to altitude and FVGs. Recognizing significant soil variables and better understanding their impact on the development of forest ecosystems is a prerequisite for distinguishing areas with the highest risk of their damage under conditions of various anthropogenic interventions and climate change. Therefore, this topic continues to require increased research efforts. For this reason, a better understanding of the relationships between soil properties and ecologically differentiated communities of forest ecosystems will allow us to identify areas with the highest risk of ecological changes that could lead to the degradation of European forests in the future.
Institute of Forest Ecology of the Slovak Academy of Sciences Ľ Štúra 2 960 53 Zvolen Slovakia
National Forest Centre Forest Research Institute T G Masaryka 22 960 92 Zvolen Slovakia
Zobrazit více v PubMed
Xiong X., Grunwald S., Myers D.B., Ross C.W., Harris W.G., Comerford N.B. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci. Total Environ. 2014;493:974–982. doi: 10.1016/j.scitotenv.2014.06.088. PubMed DOI
Babur E., Dindaroğlu T., Riaz M., Uslu O.S. Seasonal variations in litter layers' characteristics control microbial respiration and microbial carbon utilization under mature pine, cedar, and beech forest stands in the eastern mediterranean karstic ecosystems. Microb. Ecol. 2022;84:153–167. doi: 10.1007/s00248-021-01842-4. PubMed DOI
Hendrickson O. Influences of global change on carbon sequestration by agricultural and forest soils. Environ. Rev. 2003;11:161–192. doi: 10.1139/a04-001. DOI
Babur E., Dindaroğlu T., Solaiman Z.M., Battaglia M.L. Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Sci. Total Environ. 2021;775 doi: 10.1016/j.scitotenv.2021.145868. DOI
Dindaroglu T., Babur E., Battaglia M., Seleiman M., Uslu O.S., Roy R. Impact of depression areas and land-use change in the soil organic carbon and total nitrogen contents in a semi-arid karst ecosystem. Cerne. 2021;27 doi: 10.1590/01047760202127012980. e–102980. DOI
Boll E.T., Tokuchi N. Impact of forest disturbances on soil properties: a case study in Mon State, Myanmar. TROPICS. 2018;2:99–109. doi: 10.3759/tropics.MS16-18. DOI
Kurz W.A., Apps M.J. The carbon budget of Canadian forests: a sensitivity analysis of changes in disturbance regimes, growth rates, and decomposition rates. Environ. Pollut. 1994;83:55–61. doi: 10.1016/0269-7491(94)90022-1. PubMed DOI
Dawson J.J.C., Smith P. Carbon losses from soil and its consequences for land-use management. Sci. Total Environ. 2007;382:165–190. doi: 10.1016/j.scitotenv.2007.03.023. PubMed DOI
Richter D.D., Markewitz D., Trumbore S.E., Wells C.G. Rapid accumulation and turnover of soil carbon in an aggrading forest. Nature. 1999;400:56–58. doi: 10.1038/21867. DOI
Babur E., Dindaroğlu T., Roy R., Seleiman M.F., Ozlu E., Battaglia M.L., Uslu O.S. Developments in Applied Microbiology and Biotechnology, Microbial Syntrophy-Mediated Eco-Enterprising. Academic Press; 2022. Chapter 9 - relationship between organic matter and microbial biomass in different vegetation types; pp. 225–245. DOI
Wiesmeier M., Urbanski L., Hobley E., Lang B., von Lützow M., Marin-Spiotta E., van Wesemael B., Rabot E., Ließ M., Garcia-Franco N., Wollschläger U., Vogel H.-J., Kögel-Knabner I. Soil organic carbon storage as a key function of soils – a review of drivers and indicators at various scales. Geoderma. 2019;333:149–162. doi: 10.1016/j.geoderma.2018.07.026. DOI
Poschenrieder Ch, Scalenghe R. The unseen world beneath our feet: heliyon soil science. Exploring the cutting-edge techniques and ambitious goals of modern soil science. Heliyon. 2023;9 doi: 10.1016/j.heliyon.2023.e18778. PubMed DOI PMC
Zheng Q., Hu Y., Zhang S., Noll L., Böckle T., Dietrich M., Herbold C.W., Eichorst S.A., Woebken D., Richter A., Wanek W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 2019;136 doi: 10.1016/j.soilbio.2019.107521. PubMed DOI PMC
Zwetsloot M.J., van Leeuwen J., Lemmerik L., Martens H., Simó Josa I., Van de Broek M., Debeljak M., Rutgers M., Sandén T., Wall D.P., Jones A., Creamer R.E. Soil multifunctionality: synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil Sci. 2021;72:1640–1654. doi: 10.1111/ejss.13051. DOI
Yang Y., Li T., Wang Y.Q., Cheng H., Chang S.X., Liang C., An S.S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021;156 doi: 10.1016/j.soilbio.2021.108229. DOI
Villarino S.H., Pinto P., Jackson R.B., Pineiro G. Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021;7 doi: 10.1126/sciadv.abd3176. PubMed DOI PMC
Bai Y.F., Cotrufo M.F. Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science. 2022;377:603–608. doi: 10.1126/science.abo2380. PubMed DOI
Witzgall K., Vidal A., Schubert D.I., Hoschen C., Schweizer S.A., Buegger F., Pouteau V., Chenu C., Mueller C.W. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 2021;12:4115. doi: 10.1038/s41467-021-24192-8. PubMed DOI PMC
Hibbard K.A., Law B.E., Reichstein M., Sulzman J. An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry. 2005;73:29–70. doi: 10.1007/s10533-004-2946-0. DOI
Post W.M., Izaurralde R.C., Mann L.K., Bliss N. In: Carbon Sequestration in Soils. Rosenberg N., Izaurralde R.C., Malone E.L., editors. Batelle Press; Columbus, Oh: 1999. Monitoring and verifying soil carbon sequestration; pp. 41–82.
Weissert L.F., Salmond J.A., Schwendenmann L. Variability of soil organic carbon stocks and soil CO2 efflux across urban land use and soil cover types. Geoderma. 2016;271:80–90. doi: 10.1016/j.geoderma.2016.02.014. DOI
Lin H., Cao M. Plant energy storage strategy and caloric value. Ecol. Modell. 2008;217:132–138.
Salmi M., Investigation of the calorific values of peats in Finland. In: Proc. 1st Int. Peat Congr., Dublin, Ireland, July 1954, Section B3, pp. 1–9.
Ovington J.D., Heitkamp D. The accumulation of energy in forest plantations in Britain. J. Ecol. 1960;48:639–646. doi: 10.2307/2257339. DOI
Ovington J.D. Some aspects of energy flow in plantations of Pinus sylvestris L. Ann. Bot. 1961;25:12–20. doi: 10.1093/oxfordjournals.aob.a083728. DOI
Dobor L., Hlásny T., Rammer W., Barka I., Trombik J., Pavlenda P., Šebeň V., Štěpánek P., Seidl R. Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric. For. Meteorol. 2018;263:308–322. doi: 10.1016/j.agrformet.2018.08.028. PubMed DOI PMC
Rasmussen C., Southard R.J., Horwath W.R. Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Sci. Soc. Am. J. 2005;69:1266–1274. doi: 10.2136/sssaj2003.0283. DOI
Zhou G., Liu S., Li Z., Zhang D., Tang X., Zhou C., Yan J., Mo J. Old-growth forests can accumulate carbon in soils. Science. 2006;314:1417. doi: 10.1126/science.1130168. PubMed DOI
Baritz R., Seufert G., Montanarella L., Van Ranst E. Carbon concentrations and stocks in forest soils of Europe. For. Ecol. Manag. 2010;260 doi: 10.1016/j.foreco.2010.03.025. 262–27. DOI
Barančíková G., Makovníková J., Tobiašová E., Skalský R., Halas J., Koco Š. Carbon stratification in different soil types and ecosystems. Proceedings of Soil Science and Conservation Research Institute. 2016;38:16–29.
Gonet S., Dębska B. Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant Soil Environ. 2008;52:55–63. doi: 10.17221/3346-PSE. DOI
Smith P., Smith J., Wattenbach M., Meyer J., Lindner M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M., Reginster I., Kankaanpää S. Projected changes in mineral soil carbon of European forests, 1990–2100. Can. J. Soil Sci. 2006;86:159–169. doi: 10.4141/S05-078. DOI
De Vos B., Cools N., Ilvesniemi H., Vesterdal L., Vanguelova E., Carnicelli S. Benchmark values for forest soil carbon stocks in Europe: results from a large scale forest soil survey. Geoderma. 2015;251–252:33–46. doi: 10.1016/j.geoderma.2015.03.008. DOI
Minďáš J., Škvarenina J. Climate change and forest ecosystems in Slovakia. Život. Prostr. 2000;34:84–88.
Winkler K., Fuchs R.Rounsevell, Herold M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021;12:2501. doi: 10.1038/s41467-021-22702-2. PubMed DOI PMC
Zhou Y., Li X.H., Liu Y.S. Cultivated land protection and rational use in China. Land Use Pol. 2021;106 doi: 10.1016/j.landusepol.2021.105454. DOI
Borůvka L., Mladkova L., Penižek V., Drabek O., Vašat R. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma. 2007;140:374–382. doi: 10.1016/j.geoderma.2007.04.018. DOI
IUSS Working Group WRB . fourth ed. International Union of Soil Sciences (IUSS); Vienna, Austria: 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps.
Zlatnik A. The survey of groups of types of geobiocoens originally forest and shrubby in the C. S.S.R. Zpravy Geografickeho ustavu ČSAV v Brně. 1976;13:55–56.
Barré P., Plante A.F., Cécillon L., Lutfalla S., Baudin F., Bernard S., Christensen B.T., Eglin T., Fernandez J.M., Houot S., Kätterer T., Le Guillou C., Macdonald A., Folkert van Oort F., Chenu C. The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry. 2016;130:1–12. doi: 10.1007/s10533-016-0246-0. DOI
Makovníková J., Barančíková G., Pálka B. Approach to the assessment of transport risk of inorganic pollutants based on the immobilisation capability of soil. Plant Soil Environ. 2007;53:365–373. http://pse.agriculturejournals.cz/doi/10.17221/2215-PSE.pdf DOI
Mueller K.E., Eissenstat D.M., Hobbie S.E., Oleksyn J., Jagodzinski A.M., Reich P.B., Chadwick O.A., Chorover J. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry. 2012;111:601–614. doi: 10.1007/s10533-011-9695-7. DOI
Badía D., Ruiz A., Girona A., Martí C., Casanova J., Ibarra P., Zufiaurre R. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 2016;13:2155–2169. doi: 10.1007/s11629-015-3773-6. DOI
Kanagaraj N., Kaleeswari R.K., Tilak M. Impact of altitudes on soil characteristics in dry deciduous forest ecosystem, western Ghats, Tamil Nadu, India. Int. J. Curr. Microbiol. App. Sci. 2017;6:2218–2224. doi: 10.20546/ijcmas.2017.603.260. DOI
Zhang Y., Ai J., Sun Q., Li Z., Hou L., Song L., Tang G., Li L., Shao G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. Catena. 2021;196 doi: 10.1016/j.catena.2020.104872. DOI
Simon A., Dhendup K., Rai P.B., Gratzer G. Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional. 2018;12:28–38. doi: 10.1016/j.geodrs.2017.11.004. DOI
Hamid M., Khuroo A.A., Malik A.H., Ahmad R., Singh C.P. Elevation and aspect determine the differences in soil properties and plant species diversity on Himalayan Mountain summits. Ecol. Res. 2020;36:340–352. doi: 10.1111/1440-1703.12202. DOI
Hailemariam M.B., Woldu Z., Asfaw Z., Lulekal E. Impact of elevation change on the physicochemical properties of forest soil in south omo zone, southern Ethiopia. Appl. Environ. Soil Sci. 2023;2023 doi: 10.1155/2023/7305618. Article ID 7305618, 17. DOI
Sims Z.R., Nielsen G.A. Organic carbon in Montana soils as related to clay content and climate. Soil Sci. Soc. Am. J. 1986;50:1269–1271. doi: 10.2136/sssaj1986.03615995005000050037x. DOI
Gruba P., Socha J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 2019;447:105–114. doi: 10.1016/j.foreco.2019.05.061. DOI
Dey S.K. A preliminary estimation of carbon stock sequestrated through rubber (Hevea brasiliensis) plantation in North Eastern regional of India. Indian For. 2005;131:1429–1435. doi: 10.36808/if/2005/v131i11/1829. DOI
Dincă L., Dincă M., Vasile D., Spârchez G., Holonec L. Calculating organic carbon stock from forest soils. Not. Bot. Horti Agrobo. 2015;43:568–575. doi: 10.15835/nbha43210041. DOI
Šamonil P., Valtera M., Bek S., Šebkova B., Vrška T., Houška J. Soil variability through spatial scales in a permanently disturbed natural spruce-fir-beech forest. Eur. J. For. Res. 2011;130:1075–1091. doi: 10.1007/s10342-011-0496-2. DOI
Spielvogel S., Prietzel J., Auerswald K., Kogel-Knabner I. Site-specific spatial patterns of soil organic carbon stocks in different landscape units of a high-elevation forest including a site with forest dieback. Geoderma. 2009;152:218–230. doi: 10.1016/j.geoderma.2009.03.009. DOI
Petrášová V., Martinec J., Pospišilová Ľ. Total carbon content and humic substances quality in selected subtypes of Cambisols. Acta Univ. Agric. Silvic. Mendelianae Brunensis. 2009;57:73–82. doi: 10.11118/actaun200957040073. DOI
Barančíková G., Jarzykiewicz M., Gömöryová E., Tobiašová E., Litavec T. Changes in forest soil organic matter quality affected by windstorm and wildfire. J. Soil. Sediment. 2018;18:2738–2747. doi: 10.1007/s11368-018-1942-2. DOI
Wordell-Dietrich P., Don A., Helfrich M. Controlling factors for the stability of subsoil carbon in a Dystric Cambisol. Geoderma. 2017;304:40–48. doi: 10.1016/j.geoderma.2016.08.023. DOI
Kabała C., Szerszeń L. Profile distributions of lead, zinc, and copper in dystric cambisols developed from granite and gneiss of the sudetes mountains, Poland. Wat. Air and Soil Poll. 2002;138:307–317. doi: 10.1023/A:1015591607154. DOI
Garten C.T., Hanson P.J. Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma. 2006;136:342–352. doi: 10.1016/j.geoderma.2006.03.049. DOI
Spârchez G., Dincă L., Marin G., Dincă M., Enescu R.E. Variation of eutric cambisols' chemical properties based on altitudinal and geomorphological zoning. Environ. Eng. Manag. J. 2017;16:2911–2918.
Zhu B., Wang X., Fang J., Piao S., Shen H., Zhao S., Peng C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 2010;123:439–452. doi: 10.1007/s10265-009-0301-1. PubMed DOI
Dieleman W.I.J., Venter M., Ramachandra A., Krockenberger A.K., Bird M.I. Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage. Geoderma. 2013;204–205:59–67. doi: 10.1016/j.geoderma.2013.04.005. DOI
Buczko U., Cruz-García R., Harmuth J., Kalbe J., Scharnweber T., Stoll A., Wilmking M., Jurasinski G. Soil and vegetation factors affecting carbon storage in a coastal forest in NE Germany. Geoderma Reg. 2023;33 doi: 10.1016/j.geodrs.2023.e00629. DOI
Kidanemariam A., Gebrekidan H., Mamo T., Kibret K. Impact of altitude and land use type on some physical and chemical properties of acidic soils in Tsegede highlands, northern Ethiopia. Open J. Soil Sci. 2012;2:223–233. doi: 10.4236/ojss.2012.23027. DOI
Malik Z.A., Haq S.M. Soil chemical properties – variations with altitude and forest composition. A case study of Kedarnath Wildlife Sanctuary, Western Himalaya, India. J. For. Environ. Sci. 2022;38:21–37. doi: 10.7747/JFES.2022.38.1.21. DOI
Tashi S., Singh B., Keitel C., Adams M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Glob. Chang. Biol. 2016;22:2255–2268. doi: 10.1111/gcb.13234. PubMed DOI
Franzluebbers A.J. Soil organic matter stratification ratio as an indicator of soil quality. Soil Till. Res. 2002;66:95–106. doi: 10.1016/S0167-1987(02)00018-1. DOI
Brust G.E. In: Safety and Practice for Organic Food. Editor(s) Biswas D., Micallef S.A., editors. Academic Press; 2019. Chapter 9 - management strategies for organic vegetable fertility; pp. 193–212. DOI
Yin S., Wang Ch, Zhou Z. Globally altitudinal trends in soil carbon and nitrogen storage. Catena. 2022;210 doi: 10.1016/j.catena.2021.105870. DOI
He X., Hou E., Liu Y., Ven D. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci. Rep. 2016;6 doi: 10.1038/srep24261. PubMed DOI PMC
Smreczak B., Ukalska-Jaruga A. Dissolved organic matter in agricultural soils. Soil Sci. Ann. 2021;72 doi: 10.37501/soilsa/132234. DOI
Webb J., Bellamy P., Loveland P.J., Goodlass G. Crop residue returns and equilibrium soil organic carbon in England and Wales. Soil Sci. Soc. Am. J. 2003;67:928–936. doi: 10.2136/sssaj2003.9280. DOI
Enescu R., Dincǎ L., Vasile D., Vlad R. Does the slope aspect influence the soil organic matter concentration in forest soils? Forests. 2022;13:1472. doi: 10.3390/f13091472. DOI
Matus F., Rumpel C., Neculman R., Panichini M., Mora M.L. Soil carbon storage and stabilisation in andic soils: a review. Catena. 2014;120:102–110. doi: 10.1016/j.catena.2014.04.008. DOI
Gunina A., Kuzyakov Y. From energy to (soil organic) matter. Glob. Chang. Biol. 2022;28:2169–2182. doi: 10.1111/gcb.16071. PubMed DOI