• This record comes from PubMed

0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing

. 2022 Nov 08 ; 22 (22) : . [epub] 20221108

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
VAROPS University of Defence
APVV-19-0392 7& VEGA 1/0760/21 Slovak Research and Development Agency

This paper demonstrates the advantages of the multiple-input transconductor (MI-Gm) in filter application, in terms of topology simplification, increasing filter functions, and minimizing the count of needed active blocks and their consumed power. Further, the filter enjoys high input impedance, uses three MI-Gms and two grounded capacitors, and it offers both inverting and non-inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass (AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical results that confirm attractive features of the developed filter based on MI-Gm.

See more in PubMed

Kwak J.Y., Park S.-Y. Compact Continuous Time Common-Mode Feedback Circuit for Low-Power, Area-Constrained Neural Recording Amplifiers. Electronics. 2021;10:145. doi: 10.3390/electronics10020145. DOI

Tasneem N.T., Mahbub I. A 2.53 NEF 8-bit 10 kS/s 0.5 μm CMOS Neural Recording Read-Out Circuit with High Linearity for Neuromodulation Implants. Electronics. 2021;10:590. doi: 10.3390/electronics10050590. DOI

Ballo A., Pennisi S., Scotti G. 0.5 V CMOS Inverter-Based Transconductance Amplifier with Quiescent Current Control. J. Low Power Electron. Appl. 2021;11:37. doi: 10.3390/jlpea11040037. DOI

Nordi T.M., Gounella R.H., Luppe M., Junior J.N.S., Fonoff E.T., Colombari E., Romero M.A., Carmo J.P.P.D. Low-Noise Amplifier for Deep-Brain Stimulation (DBS) Electronics. 2022;11:939. doi: 10.3390/electronics11060939. DOI

Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI

Gopinathan V., Tsividis Y.P., Tan K.-S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid-State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI

Mourabit A.E., Lu G.-N., Pittet P. Wide-linear-range subthreshold OTA for low-power, low-Voltage, and low-frequency applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2005;52:1481–1488. doi: 10.1109/TCSI.2005.852011. DOI

Munoz F., Torralba A., Carvajal R.G., Tombs J., Ramirez-Angulo J. Floating-gate-based tunable CMOS low-voltage linear transconductor and its application to HF g/sub m/-C filter design. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2001;48:106–110. doi: 10.1109/82.913194. DOI

Lopez-Martin A.J., Ramirez-Angulo J., Carvajal R.G., Acosta L. CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid-State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI

Rodriguez-Villegas E. Low Power and Low Voltage Circuit Design with the FGMOS Transistor. The Institution of Engineering and Technology; London, UK: 2006.

Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW gate-driven ultra-low voltage CMOS linear transconductor with 1 MHz bandwidth and wide input range. IEEE Trans. Circuits Syst. II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU-Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI

Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU-Int. J. Electron. Commun. 2019;108:1928. doi: 10.1016/j.aeue.2019.06.003. DOI

Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V multiple-input bulk-driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI

Krummenacher F., Joehl N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits. 1988;23:750–758. doi: 10.1109/4.315. DOI

Furth P.M., Andreou A.G. Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 1995;31:545–547. doi: 10.1049/el:19950376. DOI

Tsividis Y.P., McAndrew C. Operation and Modeling of the MOS Transistor. Oxford University Press; New York, NY, USA: 2010.

Sedra A.S., Smith K.C. Microelectronic Circuit. 4th ed. Oxford University Press; New York, NY, USA: 1988. Chapter 11.

Psychalinos C., Kasimis C., Khateb F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. AEU-Int. J. Electron. Commun. 2018;93:360–367. doi: 10.1016/j.aeue.2018.06.037. DOI

Jaikla W., Talabthong P., Siripongdee S., Supavarasuwat P., Suwanjan P., Chaichana A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019;91:22–35. doi: 10.1016/j.mejo.2019.07.009. DOI

Singh D., Paul S.K. Voltage Mode Third-Order Universal Filter Using a Single CCII; Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 27–28 February 2020; pp. 160–165. DOI

Unuk T., Yuce E. A mixed-mode filter with DVCCs and grounded passive components only. AEU-Int. J. Electron. Commun. 2022;144:154063. doi: 10.1016/j.aeue.2021.154063. DOI

Wang S.-F., Chen H.-P., Ku Y., Chen P.-Y. A CFOA-based voltage-mode multifunction biquadratic filter and a quadrature oscillator using the CFOA-based biquadratic filter. Appl. Sci. 2019;9:2304. doi: 10.3390/app9112304. DOI

Bhaskar D.R., Raj A., Senani R. Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU-Int. J. Electron. Commun. 2022;153:154285. doi: 10.1016/j.aeue.2022.154285. DOI

Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU-Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI

Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI

Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog. Integr. Circuits Signal Process. 2022;111:169–188. doi: 10.1007/s10470-022-01996-2. DOI

Pevarez-Lozano H., Sanchez-Sinencio E. Minimum parasitic effects biquadratic OTA-C filter architectures. Analog. Integr. Circuits Signal Process. 1991;1:297–319. doi: 10.1007/BF00239678. DOI

Sun Y., Fidler J.K. Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter. IEE Proc. Circuits Devices Syst. 1996;143:107–114. doi: 10.1049/ip-cds:19960307. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...