0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VAROPS
University of Defence
APVV-19-0392 7& VEGA 1/0760/21
Slovak Research and Development Agency
PubMed
36433216
PubMed Central
PMC9697352
DOI
10.3390/s22228619
PII: s22228619
Knihovny.cz E-resources
- Keywords
- OTA, biosignals processing, low-voltage low-power, multiple-input MOS transistor, universal filter,
- Publication type
- Journal Article MeSH
This paper demonstrates the advantages of the multiple-input transconductor (MI-Gm) in filter application, in terms of topology simplification, increasing filter functions, and minimizing the count of needed active blocks and their consumed power. Further, the filter enjoys high input impedance, uses three MI-Gms and two grounded capacitors, and it offers both inverting and non-inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass (AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical results that confirm attractive features of the developed filter based on MI-Gm.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Electrical Engineering University of Defence Kounicova 65 662 10 Brno Czech Republic
Department of Electrical Engineering University of Kurdistan Sanandaj 66177 15175 Iran
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
See more in PubMed
Kwak J.Y., Park S.-Y. Compact Continuous Time Common-Mode Feedback Circuit for Low-Power, Area-Constrained Neural Recording Amplifiers. Electronics. 2021;10:145. doi: 10.3390/electronics10020145. DOI
Tasneem N.T., Mahbub I. A 2.53 NEF 8-bit 10 kS/s 0.5 μm CMOS Neural Recording Read-Out Circuit with High Linearity for Neuromodulation Implants. Electronics. 2021;10:590. doi: 10.3390/electronics10050590. DOI
Ballo A., Pennisi S., Scotti G. 0.5 V CMOS Inverter-Based Transconductance Amplifier with Quiescent Current Control. J. Low Power Electron. Appl. 2021;11:37. doi: 10.3390/jlpea11040037. DOI
Nordi T.M., Gounella R.H., Luppe M., Junior J.N.S., Fonoff E.T., Colombari E., Romero M.A., Carmo J.P.P.D. Low-Noise Amplifier for Deep-Brain Stimulation (DBS) Electronics. 2022;11:939. doi: 10.3390/electronics11060939. DOI
Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI
Gopinathan V., Tsividis Y.P., Tan K.-S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid-State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI
Mourabit A.E., Lu G.-N., Pittet P. Wide-linear-range subthreshold OTA for low-power, low-Voltage, and low-frequency applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2005;52:1481–1488. doi: 10.1109/TCSI.2005.852011. DOI
Munoz F., Torralba A., Carvajal R.G., Tombs J., Ramirez-Angulo J. Floating-gate-based tunable CMOS low-voltage linear transconductor and its application to HF g/sub m/-C filter design. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 2001;48:106–110. doi: 10.1109/82.913194. DOI
Lopez-Martin A.J., Ramirez-Angulo J., Carvajal R.G., Acosta L. CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid-State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI
Rodriguez-Villegas E. Low Power and Low Voltage Circuit Design with the FGMOS Transistor. The Institution of Engineering and Technology; London, UK: 2006.
Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW gate-driven ultra-low voltage CMOS linear transconductor with 1 MHz bandwidth and wide input range. IEEE Trans. Circuits Syst. II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU-Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI
Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU-Int. J. Electron. Commun. 2019;108:1928. doi: 10.1016/j.aeue.2019.06.003. DOI
Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V multiple-input bulk-driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI
Krummenacher F., Joehl N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits. 1988;23:750–758. doi: 10.1109/4.315. DOI
Furth P.M., Andreou A.G. Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 1995;31:545–547. doi: 10.1049/el:19950376. DOI
Tsividis Y.P., McAndrew C. Operation and Modeling of the MOS Transistor. Oxford University Press; New York, NY, USA: 2010.
Sedra A.S., Smith K.C. Microelectronic Circuit. 4th ed. Oxford University Press; New York, NY, USA: 1988. Chapter 11.
Psychalinos C., Kasimis C., Khateb F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. AEU-Int. J. Electron. Commun. 2018;93:360–367. doi: 10.1016/j.aeue.2018.06.037. DOI
Jaikla W., Talabthong P., Siripongdee S., Supavarasuwat P., Suwanjan P., Chaichana A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019;91:22–35. doi: 10.1016/j.mejo.2019.07.009. DOI
Singh D., Paul S.K. Voltage Mode Third-Order Universal Filter Using a Single CCII; Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 27–28 February 2020; pp. 160–165. DOI
Unuk T., Yuce E. A mixed-mode filter with DVCCs and grounded passive components only. AEU-Int. J. Electron. Commun. 2022;144:154063. doi: 10.1016/j.aeue.2021.154063. DOI
Wang S.-F., Chen H.-P., Ku Y., Chen P.-Y. A CFOA-based voltage-mode multifunction biquadratic filter and a quadrature oscillator using the CFOA-based biquadratic filter. Appl. Sci. 2019;9:2304. doi: 10.3390/app9112304. DOI
Bhaskar D.R., Raj A., Senani R. Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU-Int. J. Electron. Commun. 2022;153:154285. doi: 10.1016/j.aeue.2022.154285. DOI
Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU-Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI
Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI
Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog. Integr. Circuits Signal Process. 2022;111:169–188. doi: 10.1007/s10470-022-01996-2. DOI
Pevarez-Lozano H., Sanchez-Sinencio E. Minimum parasitic effects biquadratic OTA-C filter architectures. Analog. Integr. Circuits Signal Process. 1991;1:297–319. doi: 10.1007/BF00239678. DOI
Sun Y., Fidler J.K. Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter. IEE Proc. Circuits Devices Syst. 1996;143:107–114. doi: 10.1049/ip-cds:19960307. DOI