0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers

. 2023 Dec 20 ; 24 (1) : . [epub] 20231220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38202895

This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology.

Zobrazit více v PubMed

Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI

Chiang D.H., Schaumann R. A CMOS fully-balanced continuous-time IFLF filter design for read/write channels; Proceedings of the 1996 IEEE International Symposium on Circuits and Systems, Circuits and Systems Connecting the World, ISCAS 96; Atlanta, GA, USA. 15 May 1996; pp. 167–170. DOI

Gopinathan V., Tsividis Y.P., Tan K.S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI

Glinianowicz J., Jakusz J., Szczepanski S., Sun Y. High-frequency two-input CMOS OTA for continuous-time filter applications. IEEE Proc. Circuits Devices Syst. 2000;147:13. doi: 10.1049/ip-cds:20000317. DOI

Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI

Huang S.C., Ismail M., Zarabadi S.R. A wide range differential difference amplifier: A basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1993;40:289–301. doi: 10.1109/82.227369. DOI

Zarabadi S.R., Larsen F., Ismail M. A reconfigurable op-amp/DDA CMOS amplifier architecture. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1992;39:484–487. doi: 10.1109/81.153646. DOI

Czarnul Z., Takagi S., Fujii N. Common-mode feedback circuit with differential-difference amplifier. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994;41:243–246. doi: 10.1109/81.273924. DOI

Duque-Carrillo J.F., Torelli G., Perez-Aloe R., Valverde J.M., Maloberti F. Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995;42:190–192. doi: 10.1109/81.376865. DOI

Chiu W., Liu S.I., Tsao H.W., Chen J.J. CMOS differential difference current conveyors and their applications. IEEE Proc. Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI

Elwan H.O., Soliman A.M. Novel CMOS differential voltage current conveyor and its applications. IEEE Proc. Circuits Devices Syst. 1997;144:195–200. doi: 10.1049/ip-cds:19971081. DOI

Mahmoud S.A., Soliman A.M. The differential difference operational floating amplifier: A new block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1998;45:148–158. doi: 10.1109/82.659468. DOI

Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI

Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI

Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI

Khateb F., Kulej T., Akbari M., Tang K.T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI

Khateb F., Kumngern M., Kulej T., Akbari M., Stopjakova V. 0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors. 2022;22:8619. doi: 10.3390/s22228619. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Yavari M. 0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier. Sensors. 2023;23:2146. doi: 10.3390/s23042146. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access. 2023;11:49806–49818. doi: 10.1109/ACCESS.2023.3277252. DOI

Kumngern M., Khateb F., Kulej T. Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU Int. J. Electron. Commun. 2020;123:153310. doi: 10.1016/j.aeue.2020.153310. DOI

Kumngern M., Khateb F., Kulej T. 0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst. Signal Process. 2020;39:3189–3205. doi: 10.1007/s00034-019-01292-x. DOI

Khateb F., Kumngern M., Kulej T., Psychalinos C. 0.5 V Universal Filter Based on Multiple-Input FDDAs. Circuits Syst. Signal Process. 2019;38:5896–5907. doi: 10.1007/s00034-019-01147-5. DOI

Abuelma’Atti M.T., Bentrcia A., Al-Shahrani S.M. A novel mixed-mode current-conveyor-based filter. Int. J. Electron. 2004;91:191–197. doi: 10.1080/00207210410001677039. DOI

Abuelma’Atti M.T., Bentrcia A. A Novel Mixed-Mode CCII-Based Filter. Act. Passiv. Electron. Components. 2004;27:197–205. doi: 10.1080/08827510310001648933. DOI

Lee C.-N., Chang C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU Int. J. Electron. Commun. 2008;63:736–742. doi: 10.1016/j.aeue.2008.06.015. DOI

Minaei S., Ibrahim M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2008;37:793–810. doi: 10.1002/cta.493. DOI

Lee C.-N. Fully Cascadable Mixed-Mode Universal Filter Biquad Using DDCCs and Grounded Passive Components. J. Circuits Syst. Comput. 2011;20:607–620. doi: 10.1142/S0218126611007499. DOI

Liao W.B., Gu J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011;18:443–448.

Ghosh K., Ray B.N. CCII-Based Nth-Order Mixed Mode Elliptic Filter with Grounded R and C. J. Circuits Syst. Comput. 2015;24:1550035. doi: 10.1142/S0218126615500358. DOI

Lee C.-N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU Int. J. Electron. Commun. 2016;70:1006–1019. doi: 10.1016/j.aeue.2016.04.006. DOI

Lee C.-N. Mixed-Mode Universal Biquadratic Filter with No Need of Matching Conditions. J. Circuits Syst. Comput. 2016;25:1650106. doi: 10.1142/S0218126616501061. DOI

Tsukutani T., Kinugasa Y., Yabuki N. A novel mixed-mode universal biquad employing plus current output DVCCs. Adv. Sci. Technol. Eng. Syst. J. 2018;3:236–240. doi: 10.25046/aj030423. DOI

Singh V.K., Singh A.K., Bhaskar D.R., Senani R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express. 2005;2:548–553. doi: 10.1587/elex.2.548. DOI

Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express. 2006;3:115–121. doi: 10.1587/elex.3.115. DOI

Yuce E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU Int. J. Electron. Commun. 2010;64:304–309. doi: 10.1016/j.aeue.2008.09.010. DOI

Shah N.A., Malik M.A. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process. 2006;47:339–343. doi: 10.1007/s10470-006-5539-0. DOI

Abuelma’Atti M.T. A Novel Mixed-Mode Current-Controlled Current-Conveyor-Based Filter. Act. Passiv. Electron. Components. 2003;26:185–191. doi: 10.1080/1042015031000073841. DOI

Zhijun L. Mixed-mode universal filter using MCCCII. AEU Int. J. Electron. Commun. 2009;63:1072–1075. doi: 10.1016/j.aeue.2008.09.003. DOI

Pandey N., Paul S.K. Mixed Mode Universal Filter. J. Circuits Syst. Comput. 2013;22:1250064. doi: 10.1142/S0218126612500648. DOI

Agrawal D., Maheshwari S. High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII. Circuits Syst. Signal Process. 2021;40:1127–1151. doi: 10.1007/s00034-020-01530-7. DOI

Maheshwari S., Singh S.V., Chauhan D.S. Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circuits Devices Syst. 2011;5:149–158. doi: 10.1049/iet-cds.2010.0061. DOI

Faseehuddin M., Albrni M.A., Herencsar N., Sampe J., Ali S.H.M. Novel Electronically Tunable Biquadratic Mixed- Mode Universal Filter Capable of Operating in MISO and SIMO Configurations. Inf. MIDEM. 2020;50:189–204. doi: 10.33180/infmidem2020.304. DOI

Singh S.V., Tomar R.S., Goswami M. A Current Tunable Mixed Mode ZC-CCTAs Based Resistor Less Universal Filter. J. Circuits Syst. Comput. 2021;30:2150225. doi: 10.1142/S021812662150225X. DOI

Chen H.-P., Yang W.S. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors. Appl. Sci. 2017;7:244. doi: 10.3390/app7030244. DOI

Yesil A., Kacar F. Electronically tunable resistorless mixed-mode biquad filters. Radioengineering. 2013;22:1016–1125.

Faseehuddin M., Herencsar N., Albrni M.A., Shireen S., Sampe J. Electronically tunable mixed mode universal filter employing grounded capacitors utilizing highly versatile VD-DVCC. Circuit World. 2022;48:511–528. doi: 10.1108/CW-05-2020-0080. DOI

Mishra R., Mishra G.R., Mishra S.O., Faseehuddin M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM J. Microelectron. Electron. Components Mater. 2022;52:105–115. doi: 10.33180/infmidem2022.204. DOI

Roongmuanpha N., Faseehuddin M., Herencsar N., Tangsrirat W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021;11:9606. doi: 10.3390/app11209606. DOI

Faseehuddin M., Herencsar N., Shireen S., Tangsrirat W., Ali S.H.M. Voltage Differencing Buffered Amplifier-Based Novel Truly Mixed-Mode Biquadratic Universal Filter with Versatile Input/Output Features. Appl. Sci. 2022;12:1229. doi: 10.3390/app12031229. DOI

Abuelma’Atti M.T., Bentrcia A. A novel mixed-mode OTA-C universal filter. Int. J. Electron. 2005;92:375–383. doi: 10.1080/08827510412331295009. DOI

Bhaskar D.R., Singh A.K., Sharma R.K., Senani R. New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron. Express. 2005;2:8–13. doi: 10.1587/elex.2.8. DOI

Chen H.-P., Liao Y.-Z., Lee W.-T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process. 2008;58:135–141. doi: 10.1007/s10470-008-9228-z. DOI

Lee C.-N. Multiple-Mode OTA-C Universal Biquad Filters. Circuits Syst. Signal Process. 2009;29:263–274. doi: 10.1007/s00034-009-9145-0. DOI

Zanjani S.M.A., Dousti M., Dolatshahi M. Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology. IET Circuits Devices Syst. 2018;12:681–688. doi: 10.1049/iet-cds.2018.5158. DOI

Parvizi M., Taghizadeh A., Mahmoodian H., Kozehkanani Z.D. A Low-Power Mixed-Mode SIMO Universal Gm–C Filter. J. Circuits Syst. Comput. 2017;26:1750164. doi: 10.1142/S021812661750164X. DOI

Parvizi M. Design of a new low power MISO multi-mode universal biquad OTA-C filter. Int. J. Electron. 2019;106:440–454. doi: 10.1080/00207217.2018.1540064. DOI

Bhaskar D.R., Raj A., Kumar P. Mixed-Mode Universal Biquad Filter Using OTAs. J. Circuits Syst. Comput. 2020;29:2050162. doi: 10.1142/S0218126620501625. DOI

Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog. Integr. Circuits Signal Process. 2022;111:169–188. doi: 10.1007/s10470-022-01996-2. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC

Kumngern M., Khateb F., Kulej T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access. 2023;11:9957–9966. doi: 10.1109/ACCESS.2023.3240520. DOI

Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC

Kulej T., Kumngern M., Khateb F., Arbet D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors. 2023;23:688. doi: 10.3390/s23020688. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Ranjan R.K. 0.5 V Multiple-Input Multiple-Output Differential Difference Transconductance Amplifier and Its Applications to Shadow Filter and Oscillator. IEEE Access. 2023;11:31212–31227. doi: 10.1109/ACCESS.2023.3260146. DOI

Kumngern M., Khateb F., Kulej T., Steffan P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors. 2023;23:5945. doi: 10.3390/s23135945. PubMed DOI PMC

Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI

Kulej T. 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI

Kulej T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2015;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI

Kulej T., Khateb F. 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 2015;46:362–369. doi: 10.1016/j.mejo.2015.02.009. DOI

Krummenacher F., Joehl N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid State Circuits. 1988;23:750–758. doi: 10.1109/4.315. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace