0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38202895
PubMed Central
PMC10780353
DOI
10.3390/s24010032
PII: s24010032
Knihovny.cz E-zdroje
- Klíčová slova
- differential difference transconductance amplifier, mixed-mode filter, operational transconductance amplifier, universal filter,
- Publikační typ
- časopisecké články MeSH
This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI
Chiang D.H., Schaumann R. A CMOS fully-balanced continuous-time IFLF filter design for read/write channels; Proceedings of the 1996 IEEE International Symposium on Circuits and Systems, Circuits and Systems Connecting the World, ISCAS 96; Atlanta, GA, USA. 15 May 1996; pp. 167–170. DOI
Gopinathan V., Tsividis Y.P., Tan K.S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI
Glinianowicz J., Jakusz J., Szczepanski S., Sun Y. High-frequency two-input CMOS OTA for continuous-time filter applications. IEEE Proc. Circuits Devices Syst. 2000;147:13. doi: 10.1049/ip-cds:20000317. DOI
Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI
Huang S.C., Ismail M., Zarabadi S.R. A wide range differential difference amplifier: A basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1993;40:289–301. doi: 10.1109/82.227369. DOI
Zarabadi S.R., Larsen F., Ismail M. A reconfigurable op-amp/DDA CMOS amplifier architecture. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1992;39:484–487. doi: 10.1109/81.153646. DOI
Czarnul Z., Takagi S., Fujii N. Common-mode feedback circuit with differential-difference amplifier. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994;41:243–246. doi: 10.1109/81.273924. DOI
Duque-Carrillo J.F., Torelli G., Perez-Aloe R., Valverde J.M., Maloberti F. Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995;42:190–192. doi: 10.1109/81.376865. DOI
Chiu W., Liu S.I., Tsao H.W., Chen J.J. CMOS differential difference current conveyors and their applications. IEEE Proc. Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI
Elwan H.O., Soliman A.M. Novel CMOS differential voltage current conveyor and its applications. IEEE Proc. Circuits Devices Syst. 1997;144:195–200. doi: 10.1049/ip-cds:19971081. DOI
Mahmoud S.A., Soliman A.M. The differential difference operational floating amplifier: A new block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1998;45:148–158. doi: 10.1109/82.659468. DOI
Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI
Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI
Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI
Khateb F., Kulej T., Akbari M., Tang K.T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI
Khateb F., Kumngern M., Kulej T., Akbari M., Stopjakova V. 0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors. 2022;22:8619. doi: 10.3390/s22228619. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Yavari M. 0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier. Sensors. 2023;23:2146. doi: 10.3390/s23042146. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access. 2023;11:49806–49818. doi: 10.1109/ACCESS.2023.3277252. DOI
Kumngern M., Khateb F., Kulej T. Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU Int. J. Electron. Commun. 2020;123:153310. doi: 10.1016/j.aeue.2020.153310. DOI
Kumngern M., Khateb F., Kulej T. 0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst. Signal Process. 2020;39:3189–3205. doi: 10.1007/s00034-019-01292-x. DOI
Khateb F., Kumngern M., Kulej T., Psychalinos C. 0.5 V Universal Filter Based on Multiple-Input FDDAs. Circuits Syst. Signal Process. 2019;38:5896–5907. doi: 10.1007/s00034-019-01147-5. DOI
Abuelma’Atti M.T., Bentrcia A., Al-Shahrani S.M. A novel mixed-mode current-conveyor-based filter. Int. J. Electron. 2004;91:191–197. doi: 10.1080/00207210410001677039. DOI
Abuelma’Atti M.T., Bentrcia A. A Novel Mixed-Mode CCII-Based Filter. Act. Passiv. Electron. Components. 2004;27:197–205. doi: 10.1080/08827510310001648933. DOI
Lee C.-N., Chang C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU Int. J. Electron. Commun. 2008;63:736–742. doi: 10.1016/j.aeue.2008.06.015. DOI
Minaei S., Ibrahim M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2008;37:793–810. doi: 10.1002/cta.493. DOI
Lee C.-N. Fully Cascadable Mixed-Mode Universal Filter Biquad Using DDCCs and Grounded Passive Components. J. Circuits Syst. Comput. 2011;20:607–620. doi: 10.1142/S0218126611007499. DOI
Liao W.B., Gu J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011;18:443–448.
Ghosh K., Ray B.N. CCII-Based Nth-Order Mixed Mode Elliptic Filter with Grounded R and C. J. Circuits Syst. Comput. 2015;24:1550035. doi: 10.1142/S0218126615500358. DOI
Lee C.-N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU Int. J. Electron. Commun. 2016;70:1006–1019. doi: 10.1016/j.aeue.2016.04.006. DOI
Lee C.-N. Mixed-Mode Universal Biquadratic Filter with No Need of Matching Conditions. J. Circuits Syst. Comput. 2016;25:1650106. doi: 10.1142/S0218126616501061. DOI
Tsukutani T., Kinugasa Y., Yabuki N. A novel mixed-mode universal biquad employing plus current output DVCCs. Adv. Sci. Technol. Eng. Syst. J. 2018;3:236–240. doi: 10.25046/aj030423. DOI
Singh V.K., Singh A.K., Bhaskar D.R., Senani R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express. 2005;2:548–553. doi: 10.1587/elex.2.548. DOI
Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express. 2006;3:115–121. doi: 10.1587/elex.3.115. DOI
Yuce E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU Int. J. Electron. Commun. 2010;64:304–309. doi: 10.1016/j.aeue.2008.09.010. DOI
Shah N.A., Malik M.A. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process. 2006;47:339–343. doi: 10.1007/s10470-006-5539-0. DOI
Abuelma’Atti M.T. A Novel Mixed-Mode Current-Controlled Current-Conveyor-Based Filter. Act. Passiv. Electron. Components. 2003;26:185–191. doi: 10.1080/1042015031000073841. DOI
Zhijun L. Mixed-mode universal filter using MCCCII. AEU Int. J. Electron. Commun. 2009;63:1072–1075. doi: 10.1016/j.aeue.2008.09.003. DOI
Pandey N., Paul S.K. Mixed Mode Universal Filter. J. Circuits Syst. Comput. 2013;22:1250064. doi: 10.1142/S0218126612500648. DOI
Agrawal D., Maheshwari S. High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII. Circuits Syst. Signal Process. 2021;40:1127–1151. doi: 10.1007/s00034-020-01530-7. DOI
Maheshwari S., Singh S.V., Chauhan D.S. Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circuits Devices Syst. 2011;5:149–158. doi: 10.1049/iet-cds.2010.0061. DOI
Faseehuddin M., Albrni M.A., Herencsar N., Sampe J., Ali S.H.M. Novel Electronically Tunable Biquadratic Mixed- Mode Universal Filter Capable of Operating in MISO and SIMO Configurations. Inf. MIDEM. 2020;50:189–204. doi: 10.33180/infmidem2020.304. DOI
Singh S.V., Tomar R.S., Goswami M. A Current Tunable Mixed Mode ZC-CCTAs Based Resistor Less Universal Filter. J. Circuits Syst. Comput. 2021;30:2150225. doi: 10.1142/S021812662150225X. DOI
Chen H.-P., Yang W.S. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors. Appl. Sci. 2017;7:244. doi: 10.3390/app7030244. DOI
Yesil A., Kacar F. Electronically tunable resistorless mixed-mode biquad filters. Radioengineering. 2013;22:1016–1125.
Faseehuddin M., Herencsar N., Albrni M.A., Shireen S., Sampe J. Electronically tunable mixed mode universal filter employing grounded capacitors utilizing highly versatile VD-DVCC. Circuit World. 2022;48:511–528. doi: 10.1108/CW-05-2020-0080. DOI
Mishra R., Mishra G.R., Mishra S.O., Faseehuddin M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM J. Microelectron. Electron. Components Mater. 2022;52:105–115. doi: 10.33180/infmidem2022.204. DOI
Roongmuanpha N., Faseehuddin M., Herencsar N., Tangsrirat W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021;11:9606. doi: 10.3390/app11209606. DOI
Faseehuddin M., Herencsar N., Shireen S., Tangsrirat W., Ali S.H.M. Voltage Differencing Buffered Amplifier-Based Novel Truly Mixed-Mode Biquadratic Universal Filter with Versatile Input/Output Features. Appl. Sci. 2022;12:1229. doi: 10.3390/app12031229. DOI
Abuelma’Atti M.T., Bentrcia A. A novel mixed-mode OTA-C universal filter. Int. J. Electron. 2005;92:375–383. doi: 10.1080/08827510412331295009. DOI
Bhaskar D.R., Singh A.K., Sharma R.K., Senani R. New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron. Express. 2005;2:8–13. doi: 10.1587/elex.2.8. DOI
Chen H.-P., Liao Y.-Z., Lee W.-T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process. 2008;58:135–141. doi: 10.1007/s10470-008-9228-z. DOI
Lee C.-N. Multiple-Mode OTA-C Universal Biquad Filters. Circuits Syst. Signal Process. 2009;29:263–274. doi: 10.1007/s00034-009-9145-0. DOI
Zanjani S.M.A., Dousti M., Dolatshahi M. Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology. IET Circuits Devices Syst. 2018;12:681–688. doi: 10.1049/iet-cds.2018.5158. DOI
Parvizi M., Taghizadeh A., Mahmoodian H., Kozehkanani Z.D. A Low-Power Mixed-Mode SIMO Universal Gm–C Filter. J. Circuits Syst. Comput. 2017;26:1750164. doi: 10.1142/S021812661750164X. DOI
Parvizi M. Design of a new low power MISO multi-mode universal biquad OTA-C filter. Int. J. Electron. 2019;106:440–454. doi: 10.1080/00207217.2018.1540064. DOI
Bhaskar D.R., Raj A., Kumar P. Mixed-Mode Universal Biquad Filter Using OTAs. J. Circuits Syst. Comput. 2020;29:2050162. doi: 10.1142/S0218126620501625. DOI
Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog. Integr. Circuits Signal Process. 2022;111:169–188. doi: 10.1007/s10470-022-01996-2. DOI
Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC
Kumngern M., Khateb F., Kulej T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access. 2023;11:9957–9966. doi: 10.1109/ACCESS.2023.3240520. DOI
Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC
Kulej T., Kumngern M., Khateb F., Arbet D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors. 2023;23:688. doi: 10.3390/s23020688. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Ranjan R.K. 0.5 V Multiple-Input Multiple-Output Differential Difference Transconductance Amplifier and Its Applications to Shadow Filter and Oscillator. IEEE Access. 2023;11:31212–31227. doi: 10.1109/ACCESS.2023.3260146. DOI
Kumngern M., Khateb F., Kulej T., Steffan P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors. 2023;23:5945. doi: 10.3390/s23135945. PubMed DOI PMC
Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI
Kulej T. 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI
Kulej T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2015;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI
Kulej T., Khateb F. 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 2015;46:362–369. doi: 10.1016/j.mejo.2015.02.009. DOI
Krummenacher F., Joehl N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid State Circuits. 1988;23:750–758. doi: 10.1109/4.315. DOI