0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35408268
PubMed Central
PMC9002631
DOI
10.3390/s22072655
PII: s22072655
Knihovny.cz E-zdroje
- Klíčová slova
- analog signal processing, differential difference transconductance amplifier, quadrature oscillator, universal filter,
- MeSH
- design vybavení MeSH
- EDTA analogy a deriváty MeSH
- elektronika MeSH
- polovodiče * MeSH
- zesilovače elektronické * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DDTA MeSH Prohlížeč
- EDTA MeSH
This paper presents the extremely low-voltage supply of the CMOS structure of a differential difference transconductance amplifier (DDTA). With a 0.3-volt supply voltage, the circuit offers rail-to-rail operational capability. The circuit is designed for low-frequency biomedical and sensor applications, and it consumes 357.4 nW of power. Based on two DDTAs and two grounded capacitors, a voltage-mode universal filter and quadrature oscillator are presented as applications. The universal filter possesses high-input impedance and electronic tuning ability of the natural frequency in the range of tens up to hundreds of Hz. The total harmonic distortion (THD) for the band-pass filter was 0.5% for 100 mVpp @ 84.47 Hz input voltage. The slight modification of the filter yields a quadrature oscillator. The condition and the frequency of oscillation are orthogonally controllable. The frequency of oscillation can also be controlled electronically. The THD for a 67 Hz oscillation frequency was around 1.2%. The circuit is designed and simulated in a Cadence environment using 130 nm CMOS technology from United Microelectronics Corporation (UMC). The simulation results confirm the performance of the designed circuits.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Kulej T. 0.5 V bulk driven CMOS operational amplifier. IET Circuits Dev. Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI
Kulej T. 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Syst. Signal Processing. 2015;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI
Kulej T., Khateb F. Design and implementation of sub 0.5-V OTAs in 0.18 µm CMOS. Int. J. Circuit Theory Appl. 2018;46:1129–1143. doi: 10.1002/cta.2465. DOI
Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V high linear rail-to-rail bulk-driven OTA in 0.13 µm CMOS. IEEE Trans. Circuits Syst.—II Express Briefs. 2022;69:2046–2050. doi: 10.1109/TCSII.2022.3144095. DOI
Khateb F., Kulej T., Akbari M., Steffan P. 0.3-V bulk-driven nanopower OTA-C integrator in 0.18 µm CMOS. Circuits Syst. Signal Process. 2019;38:1333–1341. doi: 10.1007/s00034-018-0901-x. DOI
Colletta G.D., Ferreira L.H.C., Pimenta T.C. A 0.25-V 22-nS symmetrical bulk-driven OTA for low frequency Gm–C applications in 130-nm digital CMOS process. Analog Integr. Circuits Signal Process. 2014;81:377–383. doi: 10.1007/s10470-014-0385-y. DOI
Cotrim E.D., Ferreira L.H.C. An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integr. Circuits Signal Process. 2012;71:275–282. doi: 10.1007/s10470-011-9618-5. DOI
Carrillo J.M., Torelli G., Valverde R.P., Duque-Carrillo J.F. 1-V Rail-to-Rail CMOS OpAmp with Improved Bulk-Driven Input Stage. IEEE J. Solid-State Circuits. 2007;42:508–517. doi: 10.1109/JSSC.2006.891717. DOI
Vlassis S., Raikos G. Bulk-driven differential voltage follower. Electron. Lett. 2009;45:1276–1277. doi: 10.1049/el.2009.1551. DOI
Raikos G., Vlassis S. 0.8 V bulk-driven operational amplifier. Analog Integr. Circ. Signal Process. 2010;63:425–432. doi: 10.1007/s10470-009-9425-4. DOI
Carrillo J.M., Torelli G., Domínguez M.A., Pérez-Aloe R., Valverde J.M., Duque-Carrillo J.F. A Family of Low-Voltage Bulk-Driven CMOS Continuous-Time CMFB Circuits. IEEE Trans. Circuits Syst. II. 2010;57:863–867. doi: 10.1109/TCSII.2010.2068090. DOI
Raikos G., Vlassis S., Psychalinos C. 0.5 V bulk-driven analog building blocks. Int. J. Electron. Commun. (AEÜ) 2012;66:920–927. doi: 10.1016/j.aeue.2012.03.015. DOI
Kulej T., Khateb F. 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 2015;46:362–369. doi: 10.1016/j.mejo.2015.02.009. DOI
Khateb F., Kulej T. Design and implementation of a 0.3-V differential difference amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 2019;66:513–523. doi: 10.1109/TCSI.2018.2866179. DOI
Lopez-Martin A.J., Ramirez-Angulo J., Carvajal R.G., Acosta L. CMOS Transconductors with Continuous Tuning Using FGMOS Balanced Output Current Scaling. IEEE J. Solid State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI
Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor with 1 MHz Bandwidth and Wide Input Range. IEEE Trans. Circuits Syst. II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI
Khateb F., Prommee P., Kulej T. MIOTA-based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access. 2022;10:14325–14338. doi: 10.1109/ACCESS.2022.3147665. DOI
Kumngern M., Aupithak N., Khateb F., Kulej T. 0.5V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors. 2020;20:7343. doi: 10.3390/s20247343. PubMed DOI PMC
Jaikla W., Khateb F., Kumngern M., Kulej T., Ranjan R.K., Suwanjan P. 0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access. 2020;8:187832–187839. doi: 10.1109/ACCESS.2020.3030239. DOI
Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI
Kumngern M., Kulej T., Stopjakova V., Khateb F. 0.5 V Sixth-order Chebyshev band-pass filter based on multiple-input bulk-driven OTA. AEU-Int. J. Electron. Commun. 2019;111:152930. doi: 10.1016/j.aeue.2019.152930. DOI
Kumngern M., Kulej T., Khateb F., Stopjakova V., Ranjan R.K. Nanopower multiple-input DTMOS OTA and its applications to high-order filters for biomedical systems. AEU-Int. J. Electron. Commun. 2021;130:153576. doi: 10.1016/j.aeue.2020.153576. DOI
Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI
Khateb F., Kulej T., Akbari M., Kumngern M. 0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access. 2021;9:103784–103794. doi: 10.1109/ACCESS.2021.3098183. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Processing. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU-Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI
Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input Bulk-driven and multiple-input Bulk-driven Quasi-floating-gate DDCCs. AEU-Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI
Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC
Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI
Jaikla W., Adhan S., Suwanjan P., Kumngern M. Current/voltage controlled quadrature sinusoidal oscillators for phase sensitive detection using commercially available IC. Sensors. 2020;20:1319. doi: 10.3390/s20051319. PubMed DOI PMC
Ibrahim M.A., Minaei S., Kuntman H.A. A 22.5 MHz current-mode KHN-biquad using deferential voltage current conveyor and grounded passive elements. AEU-Int. J. Electron. Commun. 2005;59:311–318. doi: 10.1016/j.aeue.2004.11.027. DOI
Alexander C.K., Sadiku M.K.O. Fundamentals of Electric Circuits. 6th ed. McGraw-Hill; New York, NY, USA: 2017. pp. 655–661.
Povoa R., Arya R., Canelas A., Passos F., Martins R., Lourenco N., Horta N. Sub-μW Tow-Thomas based biquad filter with improved gain for biomedical applications. Microelectron. J. 2020;95:104675. doi: 10.1016/j.mejo.2019.104675. DOI
Masuch J., Restituto M.D. Low-power quadrature generators for body area network applications. Int. J. Circuit Theory Appl. 2011;41:33–43. doi: 10.1002/cta.783. DOI
Hu H., Gupta S., Schiavenato M. An 143nW relaxation oscillator for ultra-low power biomedical systems; Proceedings of the 2016 IEEE SENSORS; Orlando, FL, USA. 30 October–3 November 2016; pp. 1–3. DOI
Tangsrirat W., Channumsin O. High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements. Radioengineering. 2011;20:905–910.
Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145.
Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI
Yesil A., Konal M., Kacar F. Electronically Tunable Quadrature Oscillator Employing Single Differential Difference Transconductance Amplifier. Acta Phys. Pol. A. 2017;132:843. doi: 10.12693/APhysPolA.132.843. DOI
Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI
Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU-Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI
Wang S.-F., Chen H.-P., Kuu Y., Lee C.-L. Versatile voltage-mode biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electronics. 2020;9:1493. doi: 10.3390/electronics9091493. DOI
Wang S.-F., Chen H.-P., Ku Y., Lin Y.-C. Versatile tunable voltage-mode biquadratic filter and its application in quadrature oscillator. Sensors. 2019;19:2349. doi: 10.3390/s19102349. PubMed DOI PMC
Wang S.-F., Chen H.-P., Ku Y., Zhong M.-X. Analytical Synthesis of High-Pass, Band-Pass and Low-Pass Biquadratic Filters and its Quadrature Oscillator Application Using Current-Feedback Operational Amplifiers. IEEE Access. 2021;9:13330–13343. doi: 10.1109/ACCESS.2021.3050751. DOI
Faseehuddin M., Herencsar N., Albrni M.A., Sampe J. Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components. Appl. Sci. 2021;11:55. doi: 10.3390/app11010055. DOI
Faseehuddin M., Herencsar N., Shireen S., Tangsrirat W., Ali S.H.M. Voltage Differencing Buffered Amplifier-Based Novel Truly Mixed-Mode Biquadratic Universal Filter with Versatile Input/Output Features. Appl. Sci. 2022;12:1229. doi: 10.3390/app12031229. DOI
Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog Integr. Circuits Signal Processing. 2022 doi: 10.1007/s10470-022-01996-2. DOI
Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI
0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs
Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers