0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator

. 2022 Mar 30 ; 22 (7) : . [epub] 20220330

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408268

This paper presents the extremely low-voltage supply of the CMOS structure of a differential difference transconductance amplifier (DDTA). With a 0.3-volt supply voltage, the circuit offers rail-to-rail operational capability. The circuit is designed for low-frequency biomedical and sensor applications, and it consumes 357.4 nW of power. Based on two DDTAs and two grounded capacitors, a voltage-mode universal filter and quadrature oscillator are presented as applications. The universal filter possesses high-input impedance and electronic tuning ability of the natural frequency in the range of tens up to hundreds of Hz. The total harmonic distortion (THD) for the band-pass filter was 0.5% for 100 mVpp @ 84.47 Hz input voltage. The slight modification of the filter yields a quadrature oscillator. The condition and the frequency of oscillation are orthogonally controllable. The frequency of oscillation can also be controlled electronically. The THD for a 67 Hz oscillation frequency was around 1.2%. The circuit is designed and simulated in a Cadence environment using 130 nm CMOS technology from United Microelectronics Corporation (UMC). The simulation results confirm the performance of the designed circuits.

Zobrazit více v PubMed

Kulej T. 0.5 V bulk driven CMOS operational amplifier. IET Circuits Dev. Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI

Kulej T. 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Syst. Signal Processing. 2015;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI

Kulej T., Khateb F. Design and implementation of sub 0.5-V OTAs in 0.18 µm CMOS. Int. J. Circuit Theory Appl. 2018;46:1129–1143. doi: 10.1002/cta.2465. DOI

Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V high linear rail-to-rail bulk-driven OTA in 0.13 µm CMOS. IEEE Trans. Circuits Syst.—II Express Briefs. 2022;69:2046–2050. doi: 10.1109/TCSII.2022.3144095. DOI

Khateb F., Kulej T., Akbari M., Steffan P. 0.3-V bulk-driven nanopower OTA-C integrator in 0.18 µm CMOS. Circuits Syst. Signal Process. 2019;38:1333–1341. doi: 10.1007/s00034-018-0901-x. DOI

Colletta G.D., Ferreira L.H.C., Pimenta T.C. A 0.25-V 22-nS symmetrical bulk-driven OTA for low frequency Gm–C applications in 130-nm digital CMOS process. Analog Integr. Circuits Signal Process. 2014;81:377–383. doi: 10.1007/s10470-014-0385-y. DOI

Cotrim E.D., Ferreira L.H.C. An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integr. Circuits Signal Process. 2012;71:275–282. doi: 10.1007/s10470-011-9618-5. DOI

Carrillo J.M., Torelli G., Valverde R.P., Duque-Carrillo J.F. 1-V Rail-to-Rail CMOS OpAmp with Improved Bulk-Driven Input Stage. IEEE J. Solid-State Circuits. 2007;42:508–517. doi: 10.1109/JSSC.2006.891717. DOI

Vlassis S., Raikos G. Bulk-driven differential voltage follower. Electron. Lett. 2009;45:1276–1277. doi: 10.1049/el.2009.1551. DOI

Raikos G., Vlassis S. 0.8 V bulk-driven operational amplifier. Analog Integr. Circ. Signal Process. 2010;63:425–432. doi: 10.1007/s10470-009-9425-4. DOI

Carrillo J.M., Torelli G., Domínguez M.A., Pérez-Aloe R., Valverde J.M., Duque-Carrillo J.F. A Family of Low-Voltage Bulk-Driven CMOS Continuous-Time CMFB Circuits. IEEE Trans. Circuits Syst. II. 2010;57:863–867. doi: 10.1109/TCSII.2010.2068090. DOI

Raikos G., Vlassis S., Psychalinos C. 0.5 V bulk-driven analog building blocks. Int. J. Electron. Commun. (AEÜ) 2012;66:920–927. doi: 10.1016/j.aeue.2012.03.015. DOI

Kulej T., Khateb F. 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 2015;46:362–369. doi: 10.1016/j.mejo.2015.02.009. DOI

Khateb F., Kulej T. Design and implementation of a 0.3-V differential difference amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 2019;66:513–523. doi: 10.1109/TCSI.2018.2866179. DOI

Lopez-Martin A.J., Ramirez-Angulo J., Carvajal R.G., Acosta L. CMOS Transconductors with Continuous Tuning Using FGMOS Balanced Output Current Scaling. IEEE J. Solid State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI

Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor with 1 MHz Bandwidth and Wide Input Range. IEEE Trans. Circuits Syst. II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI

Khateb F., Prommee P., Kulej T. MIOTA-based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access. 2022;10:14325–14338. doi: 10.1109/ACCESS.2022.3147665. DOI

Kumngern M., Aupithak N., Khateb F., Kulej T. 0.5V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors. 2020;20:7343. doi: 10.3390/s20247343. PubMed DOI PMC

Jaikla W., Khateb F., Kumngern M., Kulej T., Ranjan R.K., Suwanjan P. 0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access. 2020;8:187832–187839. doi: 10.1109/ACCESS.2020.3030239. DOI

Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI

Kumngern M., Kulej T., Stopjakova V., Khateb F. 0.5 V Sixth-order Chebyshev band-pass filter based on multiple-input bulk-driven OTA. AEU-Int. J. Electron. Commun. 2019;111:152930. doi: 10.1016/j.aeue.2019.152930. DOI

Kumngern M., Kulej T., Khateb F., Stopjakova V., Ranjan R.K. Nanopower multiple-input DTMOS OTA and its applications to high-order filters for biomedical systems. AEU-Int. J. Electron. Commun. 2021;130:153576. doi: 10.1016/j.aeue.2020.153576. DOI

Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI

Khateb F., Kulej T., Akbari M., Kumngern M. 0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access. 2021;9:103784–103794. doi: 10.1109/ACCESS.2021.3098183. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Processing. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU-Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI

Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input Bulk-driven and multiple-input Bulk-driven Quasi-floating-gate DDCCs. AEU-Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI

Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC

Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI

Jaikla W., Adhan S., Suwanjan P., Kumngern M. Current/voltage controlled quadrature sinusoidal oscillators for phase sensitive detection using commercially available IC. Sensors. 2020;20:1319. doi: 10.3390/s20051319. PubMed DOI PMC

Ibrahim M.A., Minaei S., Kuntman H.A. A 22.5 MHz current-mode KHN-biquad using deferential voltage current conveyor and grounded passive elements. AEU-Int. J. Electron. Commun. 2005;59:311–318. doi: 10.1016/j.aeue.2004.11.027. DOI

Alexander C.K., Sadiku M.K.O. Fundamentals of Electric Circuits. 6th ed. McGraw-Hill; New York, NY, USA: 2017. pp. 655–661.

Povoa R., Arya R., Canelas A., Passos F., Martins R., Lourenco N., Horta N. Sub-μW Tow-Thomas based biquad filter with improved gain for biomedical applications. Microelectron. J. 2020;95:104675. doi: 10.1016/j.mejo.2019.104675. DOI

Masuch J., Restituto M.D. Low-power quadrature generators for body area network applications. Int. J. Circuit Theory Appl. 2011;41:33–43. doi: 10.1002/cta.783. DOI

Hu H., Gupta S., Schiavenato M. An 143nW relaxation oscillator for ultra-low power biomedical systems; Proceedings of the 2016 IEEE SENSORS; Orlando, FL, USA. 30 October–3 November 2016; pp. 1–3. DOI

Tangsrirat W., Channumsin O. High-Input Impedance Voltage-Mode Multifunction Filter Using a Single DDCCTA and Grounded Passive Elements. Radioengineering. 2011;20:905–910.

Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145.

Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI

Yesil A., Konal M., Kacar F. Electronically Tunable Quadrature Oscillator Employing Single Differential Difference Transconductance Amplifier. Acta Phys. Pol. A. 2017;132:843. doi: 10.12693/APhysPolA.132.843. DOI

Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI

Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU-Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI

Wang S.-F., Chen H.-P., Kuu Y., Lee C.-L. Versatile voltage-mode biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electronics. 2020;9:1493. doi: 10.3390/electronics9091493. DOI

Wang S.-F., Chen H.-P., Ku Y., Lin Y.-C. Versatile tunable voltage-mode biquadratic filter and its application in quadrature oscillator. Sensors. 2019;19:2349. doi: 10.3390/s19102349. PubMed DOI PMC

Wang S.-F., Chen H.-P., Ku Y., Zhong M.-X. Analytical Synthesis of High-Pass, Band-Pass and Low-Pass Biquadratic Filters and its Quadrature Oscillator Application Using Current-Feedback Operational Amplifiers. IEEE Access. 2021;9:13330–13343. doi: 10.1109/ACCESS.2021.3050751. DOI

Faseehuddin M., Herencsar N., Albrni M.A., Sampe J. Electronically Tunable Mixed-Mode Universal Filter Employing a Single Active Block and a Minimum Number of Passive Components. Appl. Sci. 2021;11:55. doi: 10.3390/app11010055. DOI

Faseehuddin M., Herencsar N., Shireen S., Tangsrirat W., Ali S.H.M. Voltage Differencing Buffered Amplifier-Based Novel Truly Mixed-Mode Biquadratic Universal Filter with Versatile Input/Output Features. Appl. Sci. 2022;12:1229. doi: 10.3390/app12031229. DOI

Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog Integr. Circuits Signal Processing. 2022 doi: 10.1007/s10470-022-01996-2. DOI

Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...