Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers

. 2023 Jan 30 ; 23 (3) : . [epub] 20230130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36772571

Grantová podpora
VAROPS. University of Defence

This paper presents new voltage-mode shadow filters employing a low-power multiple-input differential difference transconductance amplifier (MI-DDTA). This device provides multiple-input voltage-mode arithmetic operation capability, electronic tuning ability, high-input and low-output impedances. Therefore, the proposed shadow filters offer circuit simplicity, minimum number of active and passive elements, electronic control of the natural frequency and the quality factor, and high-input and low-output impedances. The proposed MI-DDTA can work with supply voltage of ±0.5 V and consumes 9.94 μW of power. The MI-DDTA and shadow filters have been designed and simulated with the SPICE program using 0.18 μm CMOS process parameters to validate the functionality and workability of the new circuits.

Zobrazit více v PubMed

Unuk T., Yuce E. Supplementary DDCC+ based universal filter with grounded passive elements. AEU-Int. J. Electron. Commun. 2021;132:153652. doi: 10.1016/j.aeue.2021.153652. DOI

Shankar C., Singh S.V., Imam R. SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog. Integr. Circuits Signal Process. 2021;109:33–46. doi: 10.1007/s10470-021-01900-4. DOI

Roongmuanpha N., Faseehuddin M., Herencsar N., Tangsrirat W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021;11:9606. doi: 10.3390/app11209606. DOI

Mishra R., Mishra G.R., Mishra S.O., Faseehuddin M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022;52:105–115. doi: 10.33180/infmidem2022.204. DOI

Bhaskar D., Raj A., Senani R. Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU-Int. J. Electron. Commun. 2022;153:154285. doi: 10.1016/j.aeue.2022.154285. DOI

Alexander C.K., Sadiku M. Fundamental of Electric Circuits. McGraw-Hill; New York, NY, USA: 2004.

Best R. Phase Locked Loops: Design, Simulation, and Applications. 6th ed. McGraw Hill; New York, NY, USA: 2007.

Schaumann R., Ghausi M., Laker K. Design of Analog Filter: Passive, Active RC, and Switched Capacitor. Prentice Hall; New York, NY, USA: 1990.

Lakys Y., Fabre A. Shadow filters—New family of second-order filters. Electron. Lett. 2010;46:276–277. doi: 10.1049/el.2010.3249. DOI

Biolkova V., Biolek D. Shadow filters for orthogonal modification of characteristic frequency and bandwidth. Electron. Lett. 2010;46:830–831. doi: 10.1049/el.2010.0717. DOI

Pandey N., Pandey R., Choudhary R., Sayal A., Tripathi M. Realization of CDTA based frequency agile filter; Proceedings of the 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC); Solan, India. 26–28 September 2013; pp. 1–6. DOI

Alaybeyoğlu E., Guney A., Altun M., Kuntman H. Design of positive feedback driven current-mode amplifiers Z-Copy CDBA and CDTA, and filter applications. Analog. Integr. Circuits Signal Process. 2014;81:109–120. doi: 10.1007/s10470-014-0345-6. DOI

Atasoyu M., Kuntman H., Metin B., Herencsar N., Cicekoglu O. Design of current-mode class 1 frequency-agile filter employing CDTAs; Proceedings of the 2015 European Conference on Circuit Theory and Design (ECCTD); Trondheim, Norway. 24–26 August 2015; pp. 1–4. DOI

Alaybeyoğlu E., Kuntman H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog. Integr. Circuits Signal Process. 2016;89:693–703. doi: 10.1007/s10470-016-0770-9. DOI

Nand D., Pandey N. New Configuration for OFCC-Based CM SIMO Filter and its Application as Shadow Filter. Arab. J. Sci. Eng. 2018;43:3011–3022. doi: 10.1007/s13369-017-3058-1. DOI

Chhabra K., Singhal S., Pandey N. Realisation of CBTA Based Current Mode Frequency Agile Filter; Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 7–8 March 2019; pp. 1076–1081. DOI

Singh D., Paul S.K. Realization of current mode universal shadow filter. AEU-Int. J. Electron. Commun. 2020;117:153088. doi: 10.1016/j.aeue.2020.153088. DOI

Singh D., Paul S.K. Improved Current Mode Biquadratic Shadow Universal Filte. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022;51:51–66. doi: 10.33180/infmidem2022.106. DOI

Anurag R., Pandey R., Pandey N., Singh M., Jain M. OTRA based shadow filters; Proceedings of the 2015 Annual IEEE India Conference (INDICON); New Delhi, India. 17–20 December 2015; pp. 1–4. DOI

Abuelma′Atti M.T., Almutairi N. New voltage-mode bandpass shadow filter; Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD); Leipzig, Germany. 21–24 March 2016; pp. 412–415. DOI

Abuelma′Atti M.T., Almutairi N. New CFOA-based shadow banpass filter; Proceedings of the 2016 International Conference on Electronics, Information, and Communications (ICEIC); Danang, Vietnam. 27–30 January 2016; pp. 1–3. DOI

Khateb F., Jaikla W., Kulej T., Kumngern M., Kubánek D. Shadow filters based on DDCC. IET Circuits Devices Syst. 2017;11:631–637. doi: 10.1049/iet-cds.2016.0522. DOI

Alaybeyoğlu E., Kuntman H. CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog. Integr. Circuits Signal Process. 2016;89:675–684. doi: 10.1007/s10470-016-0760-y. DOI

Buakaew S., Narksarp W., Wongtaychatham C. Fully Active and Minimal Shadow Bandpass Filter; Proceedings of the 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST); Phuket, Thailand. 4–7 July 2018; pp. 1–4. DOI

Buakaew S., Narksarp W., Wongtaychatham C. Shadow Bandpass Filter with Q-improvement; Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST); Luang Prabang, Laos. 2–5 July 2019; pp. 1–4. DOI

Buakaew S., Narksarp W., Wongtaychatham C. High Quality-Factor Shadow Bandpass Filters with Orthogonality to the Characteristic Frequency; Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Phuket, Thailand. 24–27 June 2020; pp. 372–375. DOI

Moonmuang P., Pukkalanun T., Tangsrirat W. Voltage Differencing Gain Amplifier-Based Shadow Filter: A Comparison Study; Proceedings of the 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST); Chiang Mai, Thailand. 1–4 July 2020; pp. 1–4. DOI

Buakaew S., Wongtaychatham C. Boosting the Quality Factor of the Shadow Bandpass Filter. J. Circuits Syst. Comput. 2022;31:2250248. doi: 10.1142/S0218126622502486. DOI

Huaihongthong P., Chaichana A., Suwanjan P., Siripongdee S., Sunthonkanokpong W., Supavarasuwat P., Jaikla W., Khateb F. Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU-Int. J. Electron. Commun. 2019;103:13–23. doi: 10.1016/j.aeue.2019.02.013. DOI

Varshney G., Pandey N., Pandey R. Generalization of shadow filters in fractional domain. Int. J. Circuit Theory Appl. 2021;49:3248–3265. doi: 10.1002/cta.3054. DOI

Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC

Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI

Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI

Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC

Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI

Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC

Nevárez-Lozano H., Sánchez-Sinencio E. Minimum parasitic effects biquadratic OTA-C filter architectures. Analog. Integr. Circuits Signal Process. 1991;1:297–319. doi: 10.1007/BF00239678. DOI

Sun Y., Fidler J. Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter. IEE Proc.-Circuits Devices Syst. 1996;143:107–114. doi: 10.1049/ip-cds:19960307. DOI

Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...