Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VAROPS.
University of Defence
PubMed
36772571
PubMed Central
PMC9919991
DOI
10.3390/s23031526
PII: s23031526
Knihovny.cz E-zdroje
- Klíčová slova
- analog filter, differential difference transconductance amplifier, multiple-input MOS technique, shadow filter,
- Publikační typ
- časopisecké články MeSH
This paper presents new voltage-mode shadow filters employing a low-power multiple-input differential difference transconductance amplifier (MI-DDTA). This device provides multiple-input voltage-mode arithmetic operation capability, electronic tuning ability, high-input and low-output impedances. Therefore, the proposed shadow filters offer circuit simplicity, minimum number of active and passive elements, electronic control of the natural frequency and the quality factor, and high-input and low-output impedances. The proposed MI-DDTA can work with supply voltage of ±0.5 V and consumes 9.94 μW of power. The MI-DDTA and shadow filters have been designed and simulated with the SPICE program using 0.18 μm CMOS process parameters to validate the functionality and workability of the new circuits.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Electrical Engineering University of Defence Kounicova 65 662 10 Brno Czech Republic
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Unuk T., Yuce E. Supplementary DDCC+ based universal filter with grounded passive elements. AEU-Int. J. Electron. Commun. 2021;132:153652. doi: 10.1016/j.aeue.2021.153652. DOI
Shankar C., Singh S.V., Imam R. SIFO–VM/TIM universal biquad filter using single DVCCTA with fully CMOS realization. Analog. Integr. Circuits Signal Process. 2021;109:33–46. doi: 10.1007/s10470-021-01900-4. DOI
Roongmuanpha N., Faseehuddin M., Herencsar N., Tangsrirat W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021;11:9606. doi: 10.3390/app11209606. DOI
Mishra R., Mishra G.R., Mishra S.O., Faseehuddin M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022;52:105–115. doi: 10.33180/infmidem2022.204. DOI
Bhaskar D., Raj A., Senani R. Three new CFOA-based SIMO-type universal active filter configurations with unrivalled features. AEU-Int. J. Electron. Commun. 2022;153:154285. doi: 10.1016/j.aeue.2022.154285. DOI
Alexander C.K., Sadiku M. Fundamental of Electric Circuits. McGraw-Hill; New York, NY, USA: 2004.
Best R. Phase Locked Loops: Design, Simulation, and Applications. 6th ed. McGraw Hill; New York, NY, USA: 2007.
Schaumann R., Ghausi M., Laker K. Design of Analog Filter: Passive, Active RC, and Switched Capacitor. Prentice Hall; New York, NY, USA: 1990.
Lakys Y., Fabre A. Shadow filters—New family of second-order filters. Electron. Lett. 2010;46:276–277. doi: 10.1049/el.2010.3249. DOI
Biolkova V., Biolek D. Shadow filters for orthogonal modification of characteristic frequency and bandwidth. Electron. Lett. 2010;46:830–831. doi: 10.1049/el.2010.0717. DOI
Pandey N., Pandey R., Choudhary R., Sayal A., Tripathi M. Realization of CDTA based frequency agile filter; Proceedings of the 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC); Solan, India. 26–28 September 2013; pp. 1–6. DOI
Alaybeyoğlu E., Guney A., Altun M., Kuntman H. Design of positive feedback driven current-mode amplifiers Z-Copy CDBA and CDTA, and filter applications. Analog. Integr. Circuits Signal Process. 2014;81:109–120. doi: 10.1007/s10470-014-0345-6. DOI
Atasoyu M., Kuntman H., Metin B., Herencsar N., Cicekoglu O. Design of current-mode class 1 frequency-agile filter employing CDTAs; Proceedings of the 2015 European Conference on Circuit Theory and Design (ECCTD); Trondheim, Norway. 24–26 August 2015; pp. 1–4. DOI
Alaybeyoğlu E., Kuntman H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog. Integr. Circuits Signal Process. 2016;89:693–703. doi: 10.1007/s10470-016-0770-9. DOI
Nand D., Pandey N. New Configuration for OFCC-Based CM SIMO Filter and its Application as Shadow Filter. Arab. J. Sci. Eng. 2018;43:3011–3022. doi: 10.1007/s13369-017-3058-1. DOI
Chhabra K., Singhal S., Pandey N. Realisation of CBTA Based Current Mode Frequency Agile Filter; Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 7–8 March 2019; pp. 1076–1081. DOI
Singh D., Paul S.K. Realization of current mode universal shadow filter. AEU-Int. J. Electron. Commun. 2020;117:153088. doi: 10.1016/j.aeue.2020.153088. DOI
Singh D., Paul S.K. Improved Current Mode Biquadratic Shadow Universal Filte. Inf. MIDEM-J. Microelectron. Electron. Components Mater. 2022;51:51–66. doi: 10.33180/infmidem2022.106. DOI
Anurag R., Pandey R., Pandey N., Singh M., Jain M. OTRA based shadow filters; Proceedings of the 2015 Annual IEEE India Conference (INDICON); New Delhi, India. 17–20 December 2015; pp. 1–4. DOI
Abuelma′Atti M.T., Almutairi N. New voltage-mode bandpass shadow filter; Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD); Leipzig, Germany. 21–24 March 2016; pp. 412–415. DOI
Abuelma′Atti M.T., Almutairi N. New CFOA-based shadow banpass filter; Proceedings of the 2016 International Conference on Electronics, Information, and Communications (ICEIC); Danang, Vietnam. 27–30 January 2016; pp. 1–3. DOI
Khateb F., Jaikla W., Kulej T., Kumngern M., Kubánek D. Shadow filters based on DDCC. IET Circuits Devices Syst. 2017;11:631–637. doi: 10.1049/iet-cds.2016.0522. DOI
Alaybeyoğlu E., Kuntman H. CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog. Integr. Circuits Signal Process. 2016;89:675–684. doi: 10.1007/s10470-016-0760-y. DOI
Buakaew S., Narksarp W., Wongtaychatham C. Fully Active and Minimal Shadow Bandpass Filter; Proceedings of the 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST); Phuket, Thailand. 4–7 July 2018; pp. 1–4. DOI
Buakaew S., Narksarp W., Wongtaychatham C. Shadow Bandpass Filter with Q-improvement; Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST); Luang Prabang, Laos. 2–5 July 2019; pp. 1–4. DOI
Buakaew S., Narksarp W., Wongtaychatham C. High Quality-Factor Shadow Bandpass Filters with Orthogonality to the Characteristic Frequency; Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Phuket, Thailand. 24–27 June 2020; pp. 372–375. DOI
Moonmuang P., Pukkalanun T., Tangsrirat W. Voltage Differencing Gain Amplifier-Based Shadow Filter: A Comparison Study; Proceedings of the 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST); Chiang Mai, Thailand. 1–4 July 2020; pp. 1–4. DOI
Buakaew S., Wongtaychatham C. Boosting the Quality Factor of the Shadow Bandpass Filter. J. Circuits Syst. Comput. 2022;31:2250248. doi: 10.1142/S0218126622502486. DOI
Huaihongthong P., Chaichana A., Suwanjan P., Siripongdee S., Sunthonkanokpong W., Supavarasuwat P., Jaikla W., Khateb F. Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU-Int. J. Electron. Commun. 2019;103:13–23. doi: 10.1016/j.aeue.2019.02.013. DOI
Varshney G., Pandey N., Pandey R. Generalization of shadow filters in fractional domain. Int. J. Circuit Theory Appl. 2021;49:3248–3265. doi: 10.1002/cta.3054. DOI
Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI
Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC
Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI
Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI
Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC
Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI
Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI
Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC
Nevárez-Lozano H., Sánchez-Sinencio E. Minimum parasitic effects biquadratic OTA-C filter architectures. Analog. Integr. Circuits Signal Process. 1991;1:297–319. doi: 10.1007/BF00239678. DOI
Sun Y., Fidler J. Synthesis and performance analysis of universal minimum component integrator-based IFLF OTA-grounded capacitor filter. IEE Proc.-Circuits Devices Syst. 1996;143:107–114. doi: 10.1049/ip-cds:19960307. DOI
Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI