1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35591225
PubMed Central
PMC9101344
DOI
10.3390/s22093535
PII: s22093535
Knihovny.cz E-zdroje
- Klíčová slova
- analog signal processing, differential difference transconductance amplifier, mixed-mode filter, universal filter,
- Publikační typ
- časopisecké články MeSH
This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations of second-order transfer functions into a single topology, namely, voltage-mode (VM), current-mode (CM), transadmittance-mode (TAM), and transimpedance-mode (TIM) transfer functions. Each operation mode offers five standard filtering responses; therefore, at least twenty filtering transfer functions can be obtained. For the filtering transfer functions, the matching conditions for the input and passive component are absent. The natural frequency and the quality factor can be set orthogonally and electronically controlled. The performance of the proposed topology was evaluated by PSPICE simulator using the 0.18 µm CMOS technology from the Taiwan Semiconductor Manufacturing Company (TSMC). The voltage supply was 1.2 V and the power dissipation of the DDTA was 66 µW. The workability of the filter was confirmed through experimental test by DDTA-based LM13600 discrete-component integrated circuits.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Wang S.-F., Chen H.-P., Ku Y., Le C.-L. Versatile voltage-modde biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electronics. 2020;9:1493. doi: 10.3390/electronics9091493. DOI
Alexander C.K., Sadiku M.N.O. Fundamentals of Electric Circuits. 6th ed. McGraw-Hill; New York, NY, USA: 2017. pp. 658–660.
Li Y. A modified CDTA (MCDTA) and its applications: Designing Current-Mode Sixth-Order Elliptic Band-Pass Filter. Circuits Syst. Signal Process. 2011;30:1383–1390. doi: 10.1007/s00034-011-9329-2. DOI
MAX260 Maxim Integrated. [(accessed on 5 January 2022)]. Available online: https://www.maximintegrated.com/en/products/analog/analog-filters/MAX260.html.
Psychalinos C., Kasimis C., Khateb F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. Int. J. Electron. Commun. 2018;93:360–367. doi: 10.1016/j.aeue.2018.06.037. DOI
Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI
Kumar A., Paul S.K. Nth order current mode universal filter using MOCCCIIs. Analog. Integr. Circuits Signal Process. 2018;95:181–193. doi: 10.1007/s10470-018-1127-3. DOI
Tangsrirat W., Channumsin O. Minimum-component current-mode universal filter. Indian J. Pure Appl. Phys. 2021;49:137–141.
Shah N., Iqbal S., Parveen B. SITO high output impedance transadmittance filter using FTFNs. Analog. Integr. Circuits Signal Process. 2004;40:87–89. doi: 10.1023/B:ALOG.0000031438.72455.b1. DOI
Shah N.A., Quadri M., Iqbal S.Z. CDTA based universal transadmittance filter. Analog. Integr. Circuits Signal Process. 2007;52:65–69. doi: 10.1007/s10470-007-9091-3. DOI
Lee C.-N. High-order multiple-mode and transadmittance-mode OTA-C universal filters. J. Circuits Syst. Comput. 2012;21:1250048. doi: 10.1142/S021812661250048X. DOI
Horng J.-W. High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioenineering. 2009;18:537–543.
Horng J.-W., Herencsar N., Wu C.-M. Current-mode and transimpedance-mode universal biquadratic filter using two current conveyors. Indian J. Eng. Mater. Sci. 2017;24:461–468.
Cevik I., Metin B., Herencsar N., Cicekoglu O., Kuntman H. Transimpedance type MOS-C bandpass analog filter core circuits. Analog. Integr. Circuits Signal Process. 2021;106:543–551. doi: 10.1007/s10470-020-01754-2. DOI
Abuelma’atti M.T., Bentrcia A., Shahrani S.M.A. A novel mixed-mode current-conveyor-based filter. Int. J. Electron. 2004;91:191–197. doi: 10.1080/00207210410001677039. DOI
Bhaskar D.R., Singh A.K., Sharma R.K., Senani R. New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron. Express. 2005;2:8–13. doi: 10.1587/elex.2.8. DOI
Minaei S., Ibrahim M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2008;37:793–810. doi: 10.1002/cta.493. DOI
Zhijun L. Mixed-mode universal filter using MCCCII. Int. J. Electron. Commun. 2009;63:1072–1075. doi: 10.1016/j.aeue.2008.09.003. DOI
Shah N.A., Rather M.F. Design of voltage-mode, trans-admittance-mode, trans-impedance-mode and current-mode biquad filter employing plus type current feedback amplifiers. J. Act. Passiv. Devices. 2010;5:29–46.
Yesil A., Kacar F. Electronically tunable resistorless mixed-mode biquad filters. Radioengineering. 2013;22:1016–1125.
Kumngern M., Junnapiya S. Mixed-mode universal filter using OTAs; Proceedings of the 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER); Bangkok, Thailand. 27–31 May 2012; pp. 119–122.
Bhaskar D.R., Raj A., Kumar P. Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput. 2020;29:2050162. doi: 10.1142/S0218126620501625. DOI
Abuelma’atti M.T. A novel mixed-mode current-controlled current-conveyor-based filter. Act. Passiv. Electron. Compon. 2003;26:185–191. doi: 10.1080/1042015031000073841. DOI
Abuelma’atti M.T., Bentrcia A. A novel mixed-mode CCII-based filter. Act. Passiv. Electron. Compon. 2004;27:197–205. doi: 10.1080/08827510310001648933. DOI
Singh V.K., Singh A.K., Bhaskar D.R., Senani R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express. 2005;2:548–553. doi: 10.1587/elex.2.548. DOI
Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express. 2006;3:115–121. doi: 10.1587/elex.3.115. DOI
Shah N.A., Malik M. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process. 2006;47:339–343. doi: 10.1007/s10470-006-5539-0. DOI
Horng J.W. Multiple-mode universal biquad filter using two DDCCs. Int. J. Electr. Eng. 2007;14:219–297.
Lee C.-N., Chang C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. Int. J. Electron. Commun. 2008;63:736–742. doi: 10.1016/j.aeue.2008.06.015. DOI
Chen H.P., Liao Y.Z., Lee W.T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process. 2009;58:135–141. doi: 10.1007/s10470-008-9228-z. DOI
Lee C.N. Multiple-mode OTA-C universal biquad filters. Circuits Syst. Signal Process. 2010;29:263–274. doi: 10.1007/s00034-009-9145-0. DOI
Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. Realization of generalized mixed mode universal filter using CCCIIs. J. Act. Passiv. Electron. Devices. 2010;5:279–293.
Maheshwari S., Singh S.V., Chauhan D.S. Electronically tunable low-voltage Mixed-mode universal biquad filter. IET Circuits Devices Syst. 2011;5:149–158. doi: 10.1049/iet-cds.2010.0061. DOI
Lee C.-N. Fully cascadable mixed-mode universal filter biquad using DDCCs and grounded passive components. J. Circuits Syst. Comput. 2011;20:607–620. doi: 10.1142/S0218126611007499. DOI
Liao W.B., Gu J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011;18:443–448.
Pandey N., Paul S.K. SIMO mixed mode universal filter. J. Act. Passiv. Electron. Devices. 2012;7:215–226.
Pandey N., Paul S.K. Mixed mode universal filter. J. Circuits Syst. Comput. 2013;22:1250064. doi: 10.1142/S0218126612500648. DOI
Lee C.N. MISO type mixed-mode biquad filter using basic active elements. Int. J. Emerg. Technol. Adv. Eng. 2015;5:309–315.
Lee C.N. Independently tunable mixed-mode universal biquad filter with versatile input/output function. Int. J. Electron. Commun. 2016;70:1006–1019. doi: 10.1016/j.aeue.2016.04.006. DOI
Lee C.N. Mixed-mode biquadratic filter using only two DVCC and grounded passive components. Int. J. Emerg. Technol. Adv. Eng. 2016;6:228–234.
Lee C.N. Mixed-Mode universal biquadratic filter with no need of matching conditions. J. Circuits Syst. Comput. 2016;25:1650106. doi: 10.1142/S0218126616501061. DOI
Chen H.P., Yang W.S. Electronically tunable current controlled current conveyor transconductance amplifier-based mixed-mode biquadratic filter with resistorless and grounded capacitors. Appl. Sci. 2017;7:244. doi: 10.3390/app7030244. DOI
Parvizi M., Taghizadeh A., Mahmoodian H., Kozehkanani Z.D. A low-power mixed-mode SIMO universal Gm-C filter. J. Circuits Syst. Comput. 2017;26:1750164. doi: 10.1142/S021812661750164X. DOI
Albrni M.I.A., Mohammad F., Herenscar N., Sampe J., Ali S.H.M. Novel electronically tunable biquadratic mixed-mode universal filter capable of operating in MISO and SIMO configurations. J. Microelectron. Electron. Compon. Mater. 2020;50:189–203.
Agrawal D., Maheshwarl S. High-performance electronically tunable analog filter using a single EX-CCCII. Circuits Syst. Singnal Process. 2021;40:1127–1151. doi: 10.1007/s00034-020-01530-7. DOI
Faseehuddin M., Herencsar N., Albrni M.A., Sampe J. Electronically tunable mixed-mode universal filter employing a single active block and a minimum number of passive components. Appl. Sci. 2021;11:55. doi: 10.3390/app11010055. DOI
Sackinger E., Guggenbuhl W. A versatile building block: The CMOS Differential Difference Amplifier. IEEE J. Solid State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI
Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI
Yesil A., Konal M., Kacar F. Electronically tunable quadrature oscillator employing single differential difference transconductance amplifier. Acta Phys. Pol. A. 2017;132:843. doi: 10.12693/APhysPolA.132.843. DOI
Denisenko D.Y., Bugakova A.V., Prokopenko N.N., Ivanov Y.I. The third order active low-pass rc-filters based on differential and differential difference operational amplifiers; Proceedings of the 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM); Erlagol, Russia. 29 June–3 July 2019; pp. 695–699.
Rana P., Ranjan A. Odd-and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2020;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI
Kumngern M. DDTA and DDCCTA: New Active Elements for Analog Signal Processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145.
Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI
Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-mode elliptic band-pass filter based on multiple-input transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI
Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal filter based on compact cmos structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC
Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance simulators and their application to the 4th order elliptic lowpass ladder filter using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Lopez–Martin A.J., Ramirez–Angulo J., Carvajal R.G., Acosta L. CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI
Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor with 1 MHz Bandwidth and Wide Input Range. IEEE Trans. Circuits Syst. Part II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI
Pandey N., Paul S.K. Differential difference current conveyor transconductance amplifier: A New Analog Building Block for Signal Processing. J. Electr. Comput. Eng. 2011;2011:361384. doi: 10.1155/2011/361384. DOI
Khateb F., Kulej T., Kumngern M., Arbet D., Jaikla W. A 0.5-V 95-dB rail-to-rail DDA for biosignal processing. AEU Int. J. Electron. Commun. 2022;145:1–9. doi: 10.1016/j.aeue.2021.154098. DOI
Martin A.J.L., Carlosena A., Ramirez-Angulo J. Very low voltage MOS translinear loops based on flipped voltage followers. Analog. Integr Circ Signal Process. 2004;40:71–74. doi: 10.1023/B:ALOG.0000031435.96974.30. DOI
Raikos G., Vlassis S., Psychalinos C. 0.5 V bulk-driven analog building blocks. Int. J. Electron. Commun. 2012;66:920–927. doi: 10.1016/j.aeue.2012.03.015. DOI
Lopez-Martin A.J., Baswa S., Ramirez-Angulo J., Carvajal R.G. Low-Voltage Super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE J. Solid State Circuits. 2005;40:1068–1077. doi: 10.1109/JSSC.2005.845977. DOI
Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI
0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs
Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers