1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter

. 2022 May 06 ; 22 (9) : . [epub] 20220506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35591225

This paper presents a new mixed-mode universal filter based on a differential difference transconductance amplifier (DDTA). Unlike the conventional transconductance amplifier (TA), this DDTA has both advantages of the TA and the differential difference amplifier (DDA). The proposed filter can offer four-mode operations of second-order transfer functions into a single topology, namely, voltage-mode (VM), current-mode (CM), transadmittance-mode (TAM), and transimpedance-mode (TIM) transfer functions. Each operation mode offers five standard filtering responses; therefore, at least twenty filtering transfer functions can be obtained. For the filtering transfer functions, the matching conditions for the input and passive component are absent. The natural frequency and the quality factor can be set orthogonally and electronically controlled. The performance of the proposed topology was evaluated by PSPICE simulator using the 0.18 µm CMOS technology from the Taiwan Semiconductor Manufacturing Company (TSMC). The voltage supply was 1.2 V and the power dissipation of the DDTA was 66 µW. The workability of the filter was confirmed through experimental test by DDTA-based LM13600 discrete-component integrated circuits.

Zobrazit více v PubMed

Wang S.-F., Chen H.-P., Ku Y., Le C.-L. Versatile voltage-modde biquadratic filter and quadrature oscillator using four OTAs and two grounded capacitors. Electronics. 2020;9:1493. doi: 10.3390/electronics9091493. DOI

Alexander C.K., Sadiku M.N.O. Fundamentals of Electric Circuits. 6th ed. McGraw-Hill; New York, NY, USA: 2017. pp. 658–660.

Li Y. A modified CDTA (MCDTA) and its applications: Designing Current-Mode Sixth-Order Elliptic Band-Pass Filter. Circuits Syst. Signal Process. 2011;30:1383–1390. doi: 10.1007/s00034-011-9329-2. DOI

MAX260 Maxim Integrated. [(accessed on 5 January 2022)]. Available online: https://www.maximintegrated.com/en/products/analog/analog-filters/MAX260.html.

Psychalinos C., Kasimis C., Khateb F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. Int. J. Electron. Commun. 2018;93:360–367. doi: 10.1016/j.aeue.2018.06.037. DOI

Wang S.-F., Chen H.-P., Ku Y., Yang C.-M. Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. AEU Int. J. Electron. Commun. 2019;110:152822. doi: 10.1016/j.aeue.2019.152822. DOI

Kumar A., Paul S.K. Nth order current mode universal filter using MOCCCIIs. Analog. Integr. Circuits Signal Process. 2018;95:181–193. doi: 10.1007/s10470-018-1127-3. DOI

Tangsrirat W., Channumsin O. Minimum-component current-mode universal filter. Indian J. Pure Appl. Phys. 2021;49:137–141.

Shah N., Iqbal S., Parveen B. SITO high output impedance transadmittance filter using FTFNs. Analog. Integr. Circuits Signal Process. 2004;40:87–89. doi: 10.1023/B:ALOG.0000031438.72455.b1. DOI

Shah N.A., Quadri M., Iqbal S.Z. CDTA based universal transadmittance filter. Analog. Integr. Circuits Signal Process. 2007;52:65–69. doi: 10.1007/s10470-007-9091-3. DOI

Lee C.-N. High-order multiple-mode and transadmittance-mode OTA-C universal filters. J. Circuits Syst. Comput. 2012;21:1250048. doi: 10.1142/S021812661250048X. DOI

Horng J.-W. High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioenineering. 2009;18:537–543.

Horng J.-W., Herencsar N., Wu C.-M. Current-mode and transimpedance-mode universal biquadratic filter using two current conveyors. Indian J. Eng. Mater. Sci. 2017;24:461–468.

Cevik I., Metin B., Herencsar N., Cicekoglu O., Kuntman H. Transimpedance type MOS-C bandpass analog filter core circuits. Analog. Integr. Circuits Signal Process. 2021;106:543–551. doi: 10.1007/s10470-020-01754-2. DOI

Abuelma’atti M.T., Bentrcia A., Shahrani S.M.A. A novel mixed-mode current-conveyor-based filter. Int. J. Electron. 2004;91:191–197. doi: 10.1080/00207210410001677039. DOI

Bhaskar D.R., Singh A.K., Sharma R.K., Senani R. New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron. Express. 2005;2:8–13. doi: 10.1587/elex.2.8. DOI

Minaei S., Ibrahim M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2008;37:793–810. doi: 10.1002/cta.493. DOI

Zhijun L. Mixed-mode universal filter using MCCCII. Int. J. Electron. Commun. 2009;63:1072–1075. doi: 10.1016/j.aeue.2008.09.003. DOI

Shah N.A., Rather M.F. Design of voltage-mode, trans-admittance-mode, trans-impedance-mode and current-mode biquad filter employing plus type current feedback amplifiers. J. Act. Passiv. Devices. 2010;5:29–46.

Yesil A., Kacar F. Electronically tunable resistorless mixed-mode biquad filters. Radioengineering. 2013;22:1016–1125.

Kumngern M., Junnapiya S. Mixed-mode universal filter using OTAs; Proceedings of the 2012 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER); Bangkok, Thailand. 27–31 May 2012; pp. 119–122.

Bhaskar D.R., Raj A., Kumar P. Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput. 2020;29:2050162. doi: 10.1142/S0218126620501625. DOI

Abuelma’atti M.T. A novel mixed-mode current-controlled current-conveyor-based filter. Act. Passiv. Electron. Compon. 2003;26:185–191. doi: 10.1080/1042015031000073841. DOI

Abuelma’atti M.T., Bentrcia A. A novel mixed-mode CCII-based filter. Act. Passiv. Electron. Compon. 2004;27:197–205. doi: 10.1080/08827510310001648933. DOI

Singh V.K., Singh A.K., Bhaskar D.R., Senani R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express. 2005;2:548–553. doi: 10.1587/elex.2.548. DOI

Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express. 2006;3:115–121. doi: 10.1587/elex.3.115. DOI

Shah N.A., Malik M. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process. 2006;47:339–343. doi: 10.1007/s10470-006-5539-0. DOI

Horng J.W. Multiple-mode universal biquad filter using two DDCCs. Int. J. Electr. Eng. 2007;14:219–297.

Lee C.-N., Chang C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. Int. J. Electron. Commun. 2008;63:736–742. doi: 10.1016/j.aeue.2008.06.015. DOI

Chen H.P., Liao Y.Z., Lee W.T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process. 2009;58:135–141. doi: 10.1007/s10470-008-9228-z. DOI

Lee C.N. Multiple-mode OTA-C universal biquad filters. Circuits Syst. Signal Process. 2010;29:263–274. doi: 10.1007/s00034-009-9145-0. DOI

Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. Realization of generalized mixed mode universal filter using CCCIIs. J. Act. Passiv. Electron. Devices. 2010;5:279–293.

Maheshwari S., Singh S.V., Chauhan D.S. Electronically tunable low-voltage Mixed-mode universal biquad filter. IET Circuits Devices Syst. 2011;5:149–158. doi: 10.1049/iet-cds.2010.0061. DOI

Lee C.-N. Fully cascadable mixed-mode universal filter biquad using DDCCs and grounded passive components. J. Circuits Syst. Comput. 2011;20:607–620. doi: 10.1142/S0218126611007499. DOI

Liao W.B., Gu J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011;18:443–448.

Pandey N., Paul S.K. SIMO mixed mode universal filter. J. Act. Passiv. Electron. Devices. 2012;7:215–226.

Pandey N., Paul S.K. Mixed mode universal filter. J. Circuits Syst. Comput. 2013;22:1250064. doi: 10.1142/S0218126612500648. DOI

Lee C.N. MISO type mixed-mode biquad filter using basic active elements. Int. J. Emerg. Technol. Adv. Eng. 2015;5:309–315.

Lee C.N. Independently tunable mixed-mode universal biquad filter with versatile input/output function. Int. J. Electron. Commun. 2016;70:1006–1019. doi: 10.1016/j.aeue.2016.04.006. DOI

Lee C.N. Mixed-mode biquadratic filter using only two DVCC and grounded passive components. Int. J. Emerg. Technol. Adv. Eng. 2016;6:228–234.

Lee C.N. Mixed-Mode universal biquadratic filter with no need of matching conditions. J. Circuits Syst. Comput. 2016;25:1650106. doi: 10.1142/S0218126616501061. DOI

Chen H.P., Yang W.S. Electronically tunable current controlled current conveyor transconductance amplifier-based mixed-mode biquadratic filter with resistorless and grounded capacitors. Appl. Sci. 2017;7:244. doi: 10.3390/app7030244. DOI

Parvizi M., Taghizadeh A., Mahmoodian H., Kozehkanani Z.D. A low-power mixed-mode SIMO universal Gm-C filter. J. Circuits Syst. Comput. 2017;26:1750164. doi: 10.1142/S021812661750164X. DOI

Albrni M.I.A., Mohammad F., Herenscar N., Sampe J., Ali S.H.M. Novel electronically tunable biquadratic mixed-mode universal filter capable of operating in MISO and SIMO configurations. J. Microelectron. Electron. Compon. Mater. 2020;50:189–203.

Agrawal D., Maheshwarl S. High-performance electronically tunable analog filter using a single EX-CCCII. Circuits Syst. Singnal Process. 2021;40:1127–1151. doi: 10.1007/s00034-020-01530-7. DOI

Faseehuddin M., Herencsar N., Albrni M.A., Sampe J. Electronically tunable mixed-mode universal filter employing a single active block and a minimum number of passive components. Appl. Sci. 2021;11:55. doi: 10.3390/app11010055. DOI

Sackinger E., Guggenbuhl W. A versatile building block: The CMOS Differential Difference Amplifier. IEEE J. Solid State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI

Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI

Yesil A., Konal M., Kacar F. Electronically tunable quadrature oscillator employing single differential difference transconductance amplifier. Acta Phys. Pol. A. 2017;132:843. doi: 10.12693/APhysPolA.132.843. DOI

Denisenko D.Y., Bugakova A.V., Prokopenko N.N., Ivanov Y.I. The third order active low-pass rc-filters based on differential and differential difference operational amplifiers; Proceedings of the 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM); Erlagol, Russia. 29 June–3 July 2019; pp. 695–699.

Rana P., Ranjan A. Odd-and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2020;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI

Kumngern M. DDTA and DDCCTA: New Active Elements for Analog Signal Processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145.

Kumngern M., Khateb F., Kulej T., Psychalinos C. Multiple-input universal filter and quadrature oscillator using multiple-input operational transconductance amplifiers. IEEE Access. 2021;9:56253–56263. doi: 10.1109/ACCESS.2021.3071829. DOI

Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-mode elliptic band-pass filter based on multiple-input transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI

Jaikla W., Khateb F., Kulej T., Pitaksuttayaprot K. Universal filter based on compact cmos structure of VDDDA. Sensors. 2021;21:1683. doi: 10.3390/s21051683. PubMed DOI PMC

Jaikla W., Bunrueangsak S., Khateb F., Kulej T., Suwanjan P., Supavarasuwat P. Inductance simulators and their application to the 4th order elliptic lowpass ladder filter using CMOS VD-DIBAs. Electronics. 2021;10:684. doi: 10.3390/electronics10060684. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Lopez–Martin A.J., Ramirez–Angulo J., Carvajal R.G., Acosta L. CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI

Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor with 1 MHz Bandwidth and Wide Input Range. IEEE Trans. Circuits Syst. Part II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI

Pandey N., Paul S.K. Differential difference current conveyor transconductance amplifier: A New Analog Building Block for Signal Processing. J. Electr. Comput. Eng. 2011;2011:361384. doi: 10.1155/2011/361384. DOI

Khateb F., Kulej T., Kumngern M., Arbet D., Jaikla W. A 0.5-V 95-dB rail-to-rail DDA for biosignal processing. AEU Int. J. Electron. Commun. 2022;145:1–9. doi: 10.1016/j.aeue.2021.154098. DOI

Martin A.J.L., Carlosena A., Ramirez-Angulo J. Very low voltage MOS translinear loops based on flipped voltage followers. Analog. Integr Circ Signal Process. 2004;40:71–74. doi: 10.1023/B:ALOG.0000031435.96974.30. DOI

Raikos G., Vlassis S., Psychalinos C. 0.5 V bulk-driven analog building blocks. Int. J. Electron. Commun. 2012;66:920–927. doi: 10.1016/j.aeue.2012.03.015. DOI

Lopez-Martin A.J., Baswa S., Ramirez-Angulo J., Carvajal R.G. Low-Voltage Super class AB CMOS OTA cells with very high slew rate and power efficiency. IEEE J. Solid State Circuits. 2005;40:1068–1077. doi: 10.1109/JSSC.2005.845977. DOI

Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1102. doi: 10.1080/00207210110071279. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...