Universal Filter Based on Compact CMOS Structure of VDDDA
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33804400
PubMed Central
PMC7957634
DOI
10.3390/s21051683
PII: s21051683
Knihovny.cz E-resources
- Keywords
- VDDDA, biquad filter, multiple-input technique, operational transconductance amplifier,
- Publication type
- Journal Article MeSH
This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is -49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.
Department of Electrical Engineering Technical University of Czestochowa 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
See more in PubMed
Myderrizi I., Minaei M., Yuce E. An Electronically Fine-Tunable Multi-Input-Single-Output Universal Filter. IEEE Trans. Biomed. Circuits Syst. II Express Briefs. 2011;58:356–360. doi: 10.1109/TCSII.2011.2158168. DOI
Psychalinos C. Log-domain SIMO and MISO low-voltage universal biquads. Analog Integr. Circuits Signal Process. 2011;67:201–211. doi: 10.1007/s10470-010-9564-7. DOI
Yuce E., Tez S. A Novel Voltage-Mode Universal Filter Composed of Two Terminal Active Devices. AEU Int. J. Electron. Commun. 2018;86:202–209. doi: 10.1016/j.aeue.2018.01.010. DOI
Ballo A., Grasso A.D., Pennisi S., Venezia C. High-Frequency Low-Current Second-Order Bandpass Active Filter Topology and Its Design in 28-nm FD-SOI CMOS. J. Low Power Electron. Appl. 2020;10:27. doi: 10.3390/jlpea10030027. DOI
Wang S.F., Chen H.P., Ku Y., Zhong M.X. Voltage-mode multifunction biquad filter and its application as fully-uncoupled quadrature oscillator based on current-feedback operational amplifiers. Sensors. 2020;20:6681. doi: 10.3390/s20226681. PubMed DOI PMC
Kumngern M., Aupithak N., Khateb F., Kulej T. 0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors. 2020;20:7343. doi: 10.3390/s20247343. PubMed DOI PMC
Prommee P., Wongprommoon N., Kumngern M., Jaikla W. Low-voltage low-pass and band-pass elliptic filters based on log-domain approach suitable for biosensors. Sensors. 2019;19:5581. doi: 10.3390/s19245581. PubMed DOI PMC
Alpaslan H., Yuce E. DVCC+ based multifunction and universal filters with the high input impedance features. Analog Integr. Circuits Signal Process. 2020;103:325–335. doi: 10.1007/s10470-020-01643-8. DOI
Safari L., Barile G., Ferri G., Stornelli V. A new low-voltage low-power dual-mode VCII-based simo universal filter. Electronics. 2019;8:765. doi: 10.3390/electronics8070765. DOI
Psychalinos C., Kasimis C., Khateb F. Multiple-input single-output universal biquad filter using single output operational transconductance amplifiers. AEU Int. J. Electron. Commun. 2018;93:360–367. doi: 10.1016/j.aeue.2018.06.037. DOI
Pandey N., Nand D., Khan Z. Single-Input Four-Output Current Mode Filter Using Operational Floating Current Conveyor. Act. Passiv. Electron. Compon. 2013;2013:318560. doi: 10.1155/2013/318560. DOI
Minaei S., Yuce E. All-Grounded Passive Elements Voltage-Mode DVCC-Based Universal Filters. Circuits Syst. Signal Process. 2010;29:295–309. doi: 10.1007/s00034-009-9136-1. DOI
Koton J., Herencsar N., Vrba K., Metin B. The VDDDA in multifunction filter with mutually independent Q and ω0 control feature; Proceedings of the 8th International Conference on Electrical and Electronics Engineering; Bursa, Turkey. 28–30 November 2013; pp. 53–56.
Koton J., Herencsar N., Vrba K., Metin B. Voltage-mode multifunction filter with mutually independent Q and control feature using VDDDAs. Analog Integr. Circuits Signal Process. 2014;81:53–60. doi: 10.1007/s10470-014-0323-z. DOI
Soisang S., Jirasereemomkul K., Jaikla W., Higuchi K. Voltage-Mode Multifunctional Biquadratic Filter Using VDDDA. Appl. Mech. Mater. 2015;781:155–159. doi: 10.4028/www.scientific.net/AMM.781.155. DOI
Siripongdee S., Jaikla W. Single VDDDA-based voltage-mode multifunction second order filter for analog signal processing; Proceedings of the International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS); Okinawa, Japan. 28–30 November 2015; pp. 39–42.
Chaimongkol S., Jaikla W. A Voltage-Mode VDDDA-Based Universal Filter; Proceedings of the International Symposium on Multimedia and Communication Technology; Ayutthaya, Thailand. 23–25 September 2015.
Chaichana A., Sangyaem S., Jaikla W. Multifunction Voltage-Mode Filter Using Single Voltage Differencing Differential Difference Amplifier; Proceedings of the International Conference on Mechatronics and Mechanical Engineering; Kuala Lumpur, Malaysia. 28–30 November 2017.
Sangyaem S., Siripongdee S., Jaikla W., Khateb F. Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs. Optik. 2017;128:14–25. doi: 10.1016/j.ijleo.2016.09.113. DOI
Tuntrakool S., Kumngern M., Sotner R., Herencsar N., Suwanjan P., Jaikla W. High input impedance voltage-mode universal filter and its modification as quadrature oscillator using VDDDAs. Indian J. Pure Appl. Phys. 2017;55:324–332.
Supavarasuwat P., Kumngern M., Sangyaem S., Jaikla W., Khateb F. Cascadable independently and electronically tunable voltage-mode universal filter with grounded passive components. AEU Int. J. Electron. Commun. 2018;84:290–299. doi: 10.1016/j.aeue.2017.12.002. DOI
Huaihongthong P., Chaichana A., Suwanjan P., Siripongdee S., Sunthonkanokpong W., Supavarasuwat P., Jaikla W., Khateb F. Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU Int. J. Electron. Commun. 2019;103:13–23. doi: 10.1016/j.aeue.2019.02.013. DOI
Kulapong W., Siripongdee S., Jaikla W. Design of Second Order Lowpass and Bandpass Filter Using Single VDDDA and Its Modification as Sinusoidal Oscillator; Proceedings of the World Symposium on Communication Engineering (WSCE); Nagoya, Japan. 20–23 December 2019; pp. 152–156.
Thinthaworn K., Jaikla W., Suwanjan P., Adhan S., Srichaiya N., Kwawsibsame A., Khateb F. A Compact Electronically Controllable Biquad Filter Synthesizing from Parallel Passive RLC Configuration; Proceedings of the Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE); Chiang Mai, Thailand. 23–26 September 2020; pp. 903–907.
Chen H.P., Hwang Y.S., Ku Y.T., Lin T.J. Voltage-mode biquadratic filters using single DDCCTA. AEU Int. J. Electron. Commun. 2016;70:1403–1411. doi: 10.1016/j.aeue.2016.08.001. DOI
Phatsornsiri P., Kumngern M., Lamun P. A Voltage-Mode Universal Biquadratic Filter Using DDCCTA. J. Circuits Syst. Comput. 2016;25:1650034. doi: 10.1142/S0218126616500341. DOI
Channumsin O., Pukkalanun T., Tangsrirat W. Voltage-mode universal filter with one input and five outputs using DDCCTAs and all-grounded passive components. Microelectron. J. 2012;43:555–561. doi: 10.1016/j.mejo.2012.05.002. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI
Khateb F., Kulej T., Kumngern K., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input Bulk-driven and multiple-input Bulk-driven Quasi-floating-gate DDCCs. AEU Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI
Kumngern M., Khateb F., Kulej T. Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU Int. J. Electron. Commun. 2020;123:153310. doi: 10.1016/j.aeue.2020.153310. DOI
Kumngern M., Khateb F., Kulej T. 0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst. Signal Process. 2020;39:3189–3205. doi: 10.1007/s00034-019-01292-x. DOI
Khateb F., Kumngern M., Kulej T., Psychalinos C. 0.5 V Universal Filter Based on Multiple-Input FDDAs. Circuits Syst. Signal Process. 2019;38:5896–5907. doi: 10.1007/s00034-019-01147-5. DOI
Kumngern M., Kulej T., Khateb F., Stopjakova V., Ranjan R.K. Nanopower multiple-input DTMOS OTA and its applications to high-order filters for biomedical systems. AEU Int. J. Electron. Commun. 2021;130:153576. doi: 10.1016/j.aeue.2020.153576. DOI
Kumngern M., Kulej T., Stopjakova V., Khateb F. 0.5 V Sixth-order Chebyshev band-pass filter based on multiple-input bulk-driven OTA. AEU Int. J. Electron. Commun. 2019;111:152930. doi: 10.1016/j.aeue.2019.152930. DOI
Jaikla W., Khateb F., Kumngern M., Kulej T., Ranjan R.K., Suwanjan P. 0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access. 2020;8:187832–187839. doi: 10.1109/ACCESS.2020.3030239. DOI
Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI
Gopinathan V., Tsividis Y.P., Tan K.-S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI
Lopez-Martin A.J., Ramirez-Angulo J., Carvajal R.G., Acosta L. CMOS Transconductors With Continuous Tuning Using FGMOS Balanced Output Current Scaling. IEEE J. Solid State Circuits. 2008;43:1313–1323. doi: 10.1109/JSSC.2008.920333. DOI
Rico-Aniles H.D., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. 360 nW Gate-Driven Ultra-Low Voltage CMOS Linear Transconductor with 1 MHz Bandwidth and Wide Input Range. IEEE Trans. Circuits Syst. II Express Briefs. 2020;67:2332–2336. doi: 10.1109/TCSII.2020.2968246. DOI
Khateb F., Biolek D. Bulk-Driven Current Differencing Transconductance Amplifier. Circuits Syst. Signal Process. 2011;30:1071–1089. doi: 10.1007/s00034-010-9254-9. DOI
Jaikla W., Sotner R., Khateb F. Design and analysis of floating inductance simulators using VDDDAs and their applications. AEU Int. J. Electron. Commun. 2019;112:152937. doi: 10.1016/j.aeue.2019.152937. DOI
Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers
0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator