0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36679485
PubMed Central
PMC9860949
DOI
10.3390/s23020688
PII: s23020688
Knihovny.cz E-zdroje
- Klíčová slova
- analog circuit, analog filter, differential different transconductance amplifiers (DDTA), oscillator,
- MeSH
- design vybavení MeSH
- zesilovače elektronické * MeSH
- Publikační typ
- časopisecké články MeSH
In this work, a new versatile voltage- and transconductance-mode analog filter is proposed. The filter, without requiring resistors, employs three differential-difference transconductance amplifiers (DDTAs) and two grounded capacitors, which is suitable for integrated circuit implementation. Unlike previous works, the proposed filter topology provides: (1) high-input and low-output impedances for a voltage-mode (VM) analog filter, that is desirable in a cascade method of realizing higher order filters, and (2) high-input and high-output impedances for a transconductance-mode (TM) analog filter without any circuit modification. Moreover, a quadrature oscillator is obtained by simply adding a feedback connection. Both VM and TM filters provide five standard filtering responses such as low-pass, high-pass, band-pass, band-stop and all-pass responses into single topology. The natural frequency and the condition of oscillation can be electronically controlled. The circuit operates with 0.5 V supply voltage. It was designed and simulated in the Cadence program using 0.18 µm CMOS technology from TSMC.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Electrical Engineering University of Defence Kounicova 65 662 10 Brno Czech Republic
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI
Huang S.-C., Ismail M., Zarabadi S.R. A wide range differential difference amplifier: A basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Express Briefs. 1993;40:289–301. doi: 10.1109/82.227369. DOI
Duque-Carrillo J., Torelli G., Perez-Aloe R., Valverde J., Maloberti F. Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. I Regul. Pap. 1995;42:190–192. doi: 10.1109/81.376865. DOI
Chiu W., Liu S.-I., Tsao H.-W., Chen J.-J. CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI
Pandey N., Paul S.K. Differential difference current conveyor transconductance amplifier: A new analog building block for signal processing. J. Electr. Comput. Eng. 2011;2011:1–10. doi: 10.1155/2011/361384. DOI
Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145. DOI
Sedra A., Smith K. A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory. 1970;17:132–134. doi: 10.1109/TCT.1970.1083067. DOI
Kumngern M., Khateb F., Dejhan K., Phasukkit P., Tungjitkusolmun S. Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering. 2013;22:448–457.
Lee C.-N. Independently tunable plus-type DDCC-based voltage-mode universal biquad filter with MISO and SIMO types. Microelectron. J. 2017;67:71–81. doi: 10.1016/j.mejo.2017.07.006. DOI
Abaci A., Yuce E. Single DDCC− based simulated floating inductors and their applications. IET Circuits, Devices Syst. 2020;14:796–804. doi: 10.1049/iet-cds.2019.0558. DOI
Unuk T., Yuce E. Supplementary DDCC+ based universal filter with grounded passive elements. AEU Int. J. Electron. Commun. 2021;132:153652. doi: 10.1016/j.aeue.2021.153652. DOI
Orman K., Yesil A., Babacan Y. DDCC-based meminductor circuit with hard and smooth switching behaviors and its circuit implementation. Microelectron. J. 2022;125:105462. doi: 10.1016/j.mejo.2022.105462. DOI
Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI
Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI
Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V differential difference transconductance amplifier and its application in mixed-mode universal filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V differential difference transconductance amplifier and its application in voltage-mode universal filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC
Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically tunable universal filter and quadrature oscillator using low-voltage differential difference transconductance amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI
Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-volt rail-to-rail DDTA and its application in a universal filter and quadrature oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC
Horowitz P., Hill W. The Art of Electronics. Cambridge University Press; Cambridge, UK: 2015.
Gift S.J.G. Electronic Circuit Design and Application. Springer Nature Switzerland AG; Cham, Switzerland: 2021.
Tietze U., Schenk C., Gamm E. Electronic Circuits: Handbook for Design and Application. Springer; Berlin/Heidelberg, Germany: 2008.
Schaumann R., Ghausi M.S., Laker K.R. Design of Analog Filters, Passive, Active RC, and Switched Capacitor. Prentice Hall; Hoboken, NJ, USA: 1990.
Chiu W.-Y., Horng J.-W. High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans. Circuits Syst. II Express Briefs. 2007;54:649–652. doi: 10.1109/TCSII.2007.899460. DOI
Chen H.-P., Liao Y.-Z. High-input and low-output impedance voltage-mode universal biquadratic filter using FDCCIIs; Proceedings of the 2008 9th International Conference on Solid-State and Integrated-Circuit Technology; Beijing, China. 20–23 October 2008; pp. 1794–1798. DOI
Liu S.I. High input impedance filters with low component spread using current-feedback amplifiers. Electron. Lett. 1995;31:1042–1043. doi: 10.1049/el:19950725. DOI
Abuelma’atti M.T., Al-Zaher H.A. New universal filter with one input and five outputs using current-feedbackamplifiers. Analog. Integr. Circuits Signal Process. 1998;16:239–244. doi: 10.1023/A:1008266223999. DOI
Wang S.-F., Chen H.-P., Ku Y., Li Y.-F. High-input impedance voltage-mode multifunction filter. Appl. Sci. 2021;11:387. doi: 10.3390/app11010387. DOI
Koton J., Herencsár N., Vrba K. KHN-equivalent voltage-mode filters using universal voltage conveyors. AEU Int. J. Electron. Commun. 2011;65:154–160. doi: 10.1016/j.aeue.2010.02.005. DOI
Sangyaem S., Siripongdee S., Jaikla W., Khateb F. Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs. Optik. 2017;128:14–25. doi: 10.1016/j.ijleo.2016.09.113. DOI
Kulej T. 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI
Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V high linear rail-to-rail bulk-driven OTA in 0.13 µm CMOS. IEEE Trans. Circuits Syst. II Express Briefs. 2022;69:2046–2050. doi: 10.1109/tcsii.2022.3144095. DOI
Furth P., Andreou A. Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 1995;31:545–547. doi: 10.1049/el:19950376. DOI
Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1101. doi: 10.1080/00207210110071279. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2018;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V multiple-input bulk-driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI
0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs