• This record comes from PubMed

0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier

. 2023 Jan 06 ; 23 (2) : . [epub] 20230106

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In this work, a new versatile voltage- and transconductance-mode analog filter is proposed. The filter, without requiring resistors, employs three differential-difference transconductance amplifiers (DDTAs) and two grounded capacitors, which is suitable for integrated circuit implementation. Unlike previous works, the proposed filter topology provides: (1) high-input and low-output impedances for a voltage-mode (VM) analog filter, that is desirable in a cascade method of realizing higher order filters, and (2) high-input and high-output impedances for a transconductance-mode (TM) analog filter without any circuit modification. Moreover, a quadrature oscillator is obtained by simply adding a feedback connection. Both VM and TM filters provide five standard filtering responses such as low-pass, high-pass, band-pass, band-stop and all-pass responses into single topology. The natural frequency and the condition of oscillation can be electronically controlled. The circuit operates with 0.5 V supply voltage. It was designed and simulated in the Cadence program using 0.18 µm CMOS technology from TSMC.

See more in PubMed

Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI

Huang S.-C., Ismail M., Zarabadi S.R. A wide range differential difference amplifier: A basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Express Briefs. 1993;40:289–301. doi: 10.1109/82.227369. DOI

Duque-Carrillo J., Torelli G., Perez-Aloe R., Valverde J., Maloberti F. Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. I Regul. Pap. 1995;42:190–192. doi: 10.1109/81.376865. DOI

Chiu W., Liu S.-I., Tsao H.-W., Chen J.-J. CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI

Pandey N., Paul S.K. Differential difference current conveyor transconductance amplifier: A new analog building block for signal processing. J. Electr. Comput. Eng. 2011;2011:1–10. doi: 10.1155/2011/361384. DOI

Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145. DOI

Sedra A., Smith K. A second-generation current conveyor and its applications. IEEE Trans. Circuit Theory. 1970;17:132–134. doi: 10.1109/TCT.1970.1083067. DOI

Kumngern M., Khateb F., Dejhan K., Phasukkit P., Tungjitkusolmun S. Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering. 2013;22:448–457.

Lee C.-N. Independently tunable plus-type DDCC-based voltage-mode universal biquad filter with MISO and SIMO types. Microelectron. J. 2017;67:71–81. doi: 10.1016/j.mejo.2017.07.006. DOI

Abaci A., Yuce E. Single DDCC− based simulated floating inductors and their applications. IET Circuits, Devices Syst. 2020;14:796–804. doi: 10.1049/iet-cds.2019.0558. DOI

Unuk T., Yuce E. Supplementary DDCC+ based universal filter with grounded passive elements. AEU Int. J. Electron. Commun. 2021;132:153652. doi: 10.1016/j.aeue.2021.153652. DOI

Orman K., Yesil A., Babacan Y. DDCC-based meminductor circuit with hard and smooth switching behaviors and its circuit implementation. Microelectron. J. 2022;125:105462. doi: 10.1016/j.mejo.2022.105462. DOI

Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI

Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V differential difference transconductance amplifier and its application in mixed-mode universal filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V differential difference transconductance amplifier and its application in voltage-mode universal filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC

Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically tunable universal filter and quadrature oscillator using low-voltage differential difference transconductance amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI

Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-volt rail-to-rail DDTA and its application in a universal filter and quadrature oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC

Horowitz P., Hill W. The Art of Electronics. Cambridge University Press; Cambridge, UK: 2015.

Gift S.J.G. Electronic Circuit Design and Application. Springer Nature Switzerland AG; Cham, Switzerland: 2021.

Tietze U., Schenk C., Gamm E. Electronic Circuits: Handbook for Design and Application. Springer; Berlin/Heidelberg, Germany: 2008.

Schaumann R., Ghausi M.S., Laker K.R. Design of Analog Filters, Passive, Active RC, and Switched Capacitor. Prentice Hall; Hoboken, NJ, USA: 1990.

Chiu W.-Y., Horng J.-W. High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs. IEEE Trans. Circuits Syst. II Express Briefs. 2007;54:649–652. doi: 10.1109/TCSII.2007.899460. DOI

Chen H.-P., Liao Y.-Z. High-input and low-output impedance voltage-mode universal biquadratic filter using FDCCIIs; Proceedings of the 2008 9th International Conference on Solid-State and Integrated-Circuit Technology; Beijing, China. 20–23 October 2008; pp. 1794–1798. DOI

Liu S.I. High input impedance filters with low component spread using current-feedback amplifiers. Electron. Lett. 1995;31:1042–1043. doi: 10.1049/el:19950725. DOI

Abuelma’atti M.T., Al-Zaher H.A. New universal filter with one input and five outputs using current-feedbackamplifiers. Analog. Integr. Circuits Signal Process. 1998;16:239–244. doi: 10.1023/A:1008266223999. DOI

Wang S.-F., Chen H.-P., Ku Y., Li Y.-F. High-input impedance voltage-mode multifunction filter. Appl. Sci. 2021;11:387. doi: 10.3390/app11010387. DOI

Koton J., Herencsár N., Vrba K. KHN-equivalent voltage-mode filters using universal voltage conveyors. AEU Int. J. Electron. Commun. 2011;65:154–160. doi: 10.1016/j.aeue.2010.02.005. DOI

Sangyaem S., Siripongdee S., Jaikla W., Khateb F. Five-inputs single-output voltage mode universal filter with high input and low output impedance using VDDDAs. Optik. 2017;128:14–25. doi: 10.1016/j.ijleo.2016.09.113. DOI

Kulej T. 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI

Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V high linear rail-to-rail bulk-driven OTA in 0.13 µm CMOS. IEEE Trans. Circuits Syst. II Express Briefs. 2022;69:2046–2050. doi: 10.1109/tcsii.2022.3144095. DOI

Furth P., Andreou A. Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 1995;31:545–547. doi: 10.1049/el:19950376. DOI

Tsukutani T., Higashimura M., Takahashi N., Sumi Y., Fukui Y. Versatile voltage-mode active-only biquad with lossless and lossy integrator loop. Int. J. Electron. 2001;88:1093–1101. doi: 10.1080/00207210110071279. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2018;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V multiple-input bulk-driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...