An increased circular dichroism (CD) signal of large molecular aggregates formed upon DNA condensation was observed a long time ago, and is often referred to as psi-CD. The effort to understand this phenomenon is further motivated by the latest DNA packing studies and advances in macromolecular chemistry. In the present work, the transition dipole coupling model describing interactions of molecules with light has been extended to handle systems of arbitrary size. The analytical formulae obtained retain the simplicity and computational speed of the standard approach. The origin of the psi-effect was investigated on several model systems. The results suggest that the CD enhancement is primarily caused by delocalized phonon-like excitations in nucleic acid strands. The size of the system exhibiting the effect thus does not need to be comparable with or greater than the wavelength of the absorbed light. Small structural irregularities still allow for the enhancement while a larger disorder breaks it. The modeling is consistent with previous experimental electronic and vibrational CD studies, and makes it possible to correlate the enhancement with the geometry of the nucleic acid systems. 2008 Wiley Periodicals, Inc.
This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.
- MeSH
- Models, Theoretical * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Transplantation, Autologous MeSH
- Adult MeSH
- Granulocytes MeSH
- Bone Marrow metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Leukocyte Count MeSH
- Antineoplastic Agents analysis therapeutic use MeSH
- Hematopoietic Stem Cell Transplantation MeSH
- Bone Marrow Transplantation MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
Modern electroencephalographic (EEG) technology contributed to the appreciation that the EEG signal outside the classical Berger frequency band contains important information. In epilepsy, research of the past decade focused particularly on interictal high-frequency oscillations (HFOs) > 80 Hz. The first large application of HFOs was in the context of epilepsy surgery. This is now followed by other applications such as assessment of epilepsy severity and monitoring of antiepileptic therapy. This article reviews the evidence on the clinical use of HFOs in epilepsy with an emphasis on the latest developments. It highlights the growing literature on the association between HFOs and postsurgical seizure outcome. A recent meta-analysis confirmed a higher resection ratio for HFOs in seizure-free versus non-seizure-free patients. Residual HFOs in the postoperative electrocorticogram were shown to predict epilepsy surgery outcome better than preoperative HFO rates. The review further discusses the different attempts to separate physiological from epileptic HFOs, as this might increase the specificity of HFOs. As an example, analysis of sleep microstructure demonstrated a different coupling between HFOs inside and outside the epileptogenic zone. Moreover, there is increasing evidence that HFOs are useful to measure disease activity and assess treatment response using noninvasive EEG and magnetoencephalography. This approach is particularly promising in children, because they show high scalp HFO rates. HFO rates in West syndrome decrease after adrenocorticotropic hormone treatment. Presence of HFOs at the time of rolandic spikes correlates with seizure frequency. The time-consuming visual assessment of HFOs, which prevented their clinical application in the past, is now overcome by validated computer-assisted algorithms. HFO research has considerably advanced over the past decade, and use of noninvasive methods will make HFOs accessible to large numbers of patients. Prospective multicenter trials are awaited to gather information over long recording periods in large patient samples.
- MeSH
- Biological Clocks physiology MeSH
- Biomedical Research * MeSH
- Electroencephalography MeSH
- Epilepsy diagnosis physiopathology MeSH
- Humans MeSH
- Brain Mapping MeSH
- Brain Waves physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
It was hypothesized that an oscillation of tissue oxygen index (TOI) determined by near-infrared spectroscopy during recovery from exercise occurs due to feedback control of adenosine triphosphate and that frequency of the oscillation is affected by blood pH. In order to examine these hypotheses, we aimed 1) to determine whether there is an oscillation of TOI during recovery from exercise and 2) to determine the effect of blood pH on frequency of the oscillation of TOI. Three exercises were performed with exercise intensities of 30 % and 70 % peak oxygen uptake (V(.)o(2)peak) for 12 min and with exercise intensity of 70 % V(.)o(2)peak for 30 s. TOI during recovery from the exercise was analyzed by fast Fourier transform in order to obtain power spectra density (PSD). There was a significant difference in the frequency at which maximal PSD of TOI appeared (Fmax) between the exercises with 70 % V(.)o(2)peak for 12 min (0.0039+/-0 Hz) and for 30 s (0.0061+/-0.0028 Hz). However, there was no significant difference in Fmax between the exercises with 30 % (0.0043+/-0.0013 Hz) and with 70 % V(.)o(2)peak for 12 min despite differences in blood pH and blood lactate from the warmed fingertips. It is concluded that there was an oscillation in TOI during recovery from the three exercises. It was not clearly shown that there was an effect of blood pH on Fmax.
- MeSH
- Blood Gas Analysis methods MeSH
- Biological Clocks physiology MeSH
- Exercise physiology MeSH
- Muscle, Skeletal physiology MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Oxygen Consumption physiology MeSH
- Muscle Contraction physiology MeSH
- Exercise Test methods MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
Preictal, ictal, and postictal oscillations in the basal ganglia were analyzed. Five persons with temporal lobe epilepsy who were candidates for surgery had diagonal depth electrodes implanted in the basal ganglia: four of them in the putamen, and one in the pallidum and caudate. Time-frequency and power spectral analyses were used to analyze the EEG. Significant frequency components of 2-10 Hz were consistently observed in the basal ganglia. The frequency of this component slowed during seizures. There was a significant ictal increase in power spectral density in all frequency ranges. The changes in the basal ganglia were consistent while seizure activity spread over the cortex, and partially persisted after the clinical seizure ended. They were inconsistent in the period after seizure onset. Seizures originating in the mesiotemporal structures can affect physiological rhythms in the basal ganglia. The basal ganglia did not generate epileptiform EEG activity. An inhibitory role for the basal ganglia during temporal lobe seizures is suggested.
- MeSH
- Principal Component Analysis MeSH
- Video Recording methods MeSH
- Basal Ganglia physiopathology MeSH
- Biological Clocks physiology MeSH
- Adult MeSH
- Electroencephalography methods MeSH
- Epilepsy, Temporal Lobe pathology MeSH
- Humans MeSH
- Brain Mapping MeSH
- Young Adult MeSH
- Brain Waves physiology MeSH
- Spectrum Analysis MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH