• Something wrong with this record ?

Dynamical tangles in third-order oscillator with single jump function

J. Petržela, T. Gotthans, M. Guzan,

. 2014 ; 2014 (-) : 239407. [pub] 20141203

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000417
003      
CZ-PrNML
005      
20160127122425.0
007      
ta
008      
160108s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2014/239407 $2 doi
035    __
$a (PubMed)25544951
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Petržela, Jiří $u Department of Radio Electronics, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
245    10
$a Dynamical tangles in third-order oscillator with single jump function / $c J. Petržela, T. Gotthans, M. Guzan,
520    9_
$a This contribution brings a deep and detailed study of the dynamical behavior associated with nonlinear oscillator described by a single third-order differential equation with scalar jump nonlinearity. The relative primitive geometry of the vector field allows making an exhaustive numerical analysis of its possible solutions, visualizations of the invariant manifolds, and basins of attraction as well as proving the existence of chaotic motion by using the concept of both Shilnikov theorems. The aim of this paper is also to complete, carry out and link the previous works on simple Newtonian dynamics, and answer the question how individual types of the phenomenon evolve with time via understandable notes.
650    12
$a teoretické modely $7 D008962
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gotthans, Tomas $u Department of Radio Electronics, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
700    1_
$a Guzan, Milan $u Department of Theoretical Electrotechnics and Electrical Measurement, Technical University of Kosice, Letna 9, 042 00 Kosice, Slovakia.
773    0_
$w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2014, č. - (2014), s. 239407
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25544951 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160127122549 $b ABA008
999    __
$a ok $b bmc $g 1102698 $s 924623
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 2014 $c - $d 239407 $e 20141203 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
LZP    __
$a Pubmed-20160108

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...