0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37447794
PubMed Central
PMC10347119
DOI
10.3390/s23135945
PII: s23135945
Knihovny.cz E-zdroje
- Klíčová slova
- analog filter, differential difference transconductance amplifier, low-voltage low-power circuit, voltage-mode circuit,
- Publikační typ
- časopisecké články MeSH
This paper presents a versatile first-order analog filter using differential difference transconductance amplifiers (DDTAs). The DDTA employs the bulk-driven (BD) multiple-input MOS transistors technique (MI-MOST) operating in the subthreshold region. This results in low-voltage and low-power operational capability. Therefore, the DDTA, designed using 130 nm CMOS technology from UMC in the Cadence environment, operates with 0.3 V and consumes 357.4 nW. Unlike previous works, the proposed versatile first-order analog filter provides first-order transfer functions of low-pass, high-pass, and all-pass filters within a single topology. The non-inverting, inverting, and voltage gain of the transfer functions are available for all filters. Furthermore, the proposed structure provides high-input and low-output impedance, which is required for voltage-mode circuits. The pole frequency and voltage gain of the filters can be electronically controlled. The total harmonic distortion of the low-pass filter was calculated as -39.97 dB with an applied sine wave input signal of 50 mVpp@ 50 Hz. The proposed filter has been used to realize a quadrature oscillator to confirm the advantages of the new structure.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 616 00 Brno Czech Republic
Zobrazit více v PubMed
Smith K., Sedra A. The current conveyor—A new circuit building block. Proc. IEEE. 1968;56:1368–1369. doi: 10.1109/PROC.1968.6591. DOI
Chiu W., Liu S.-I., Tsao H.-W., Chen J.-J. CMOS differential difference current conveyors and their applications. IEE Proc.-Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI
Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-state Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI
Pandey N., Paul S.K. Differential Difference Current Conveyor Transconductance Amplifier: A New Analog Building Block for Signal Processing. J. Electr. Comput. Eng. 2011;2011:361384. doi: 10.1155/2011/361384. DOI
Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145. DOI
Jantakun A., Pisutthipong N., Siripruchyanun M. A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs; Proceedings of the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology; Chonburi, Thailand. 6–9 May 2009; pp. 560–563. DOI
Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC
Kumngern M., Khateb F., Kulej T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access. 2023;11:9957–9966. doi: 10.1109/ACCESS.2023.3240520. DOI
Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC
Kulej T., Kumngern M., Khateb F., Arbet D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors. 2023;23:688. doi: 10.3390/s23020688. PubMed DOI PMC
Khateb F., Kumngern M., Kulej T., Ranjan R.K. 0.5 V multiple-input multiple-output differential difference transconductance amplifier and its applications to shadow filter and oscillator. IEEE Access. 2023;11:31212–31227. doi: 10.1109/ACCESS.2023.3260146. DOI
Palani R.K., Sturm M., Harjani R. A 1.56mW 50MHz 3rd-order filter with current-mode active-RC biquad and 33dBm IIP3 in 65nm CMOS; Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC); Singapore. 11–13 November 2013; pp. 373–376. DOI
Hanumantha G.R., Sreenivasulu P., Rekha S., Bhat M.S. A 0.3-V, 2.4-nW, and 100-Hz fourth-order LPF for ECG signal processing. Int. J. Circuit Theory Appl. 2020;48:1853–1863. doi: 10.1002/cta.2839. DOI
Abuan D.D., Perez G.F., Medrano M.B., Velasco C.P. Wide Bandpass Filter Composed of First-order and Second-Order Active High Pass Filters Simulated Using MATLAB and Multisim Live; Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS); Tashkent, Uzbekistan. 10–12 October 2022; pp. 403–408. DOI
Isaksen J., Leber R., Schmid R., Schmid H.-J., Generali G., Abacherli R. The first-order high-pass filter influences the automatic measurements of the electrocardiogram; Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Shanghai, China. 20–25 March 2016; pp. 784–788. DOI
Comer D., Gonzalez J. A high-frequency integrable bandpass filter configuration. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1997;44:856–861. doi: 10.1109/82.633445. DOI
Gift S. The application of all-pass filters in the design of multiphase sinusoidal systems. Microelectron. J. 2000;31:9–13. doi: 10.1016/S0026-2692(99)00084-1. DOI
Garakoui S.K., Klumperink E.A.M., Nauta B., Vanvliet F.E. Frequency Limitations of First-Order gm−RC All-Pass Delay Circuits. IEEE Trans. Circuits Syst. II Express Briefs. 2013;60:572–576. doi: 10.1109/tcsii.2013.2268418. DOI
Paul A., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. CMOS First-Order All-Pass Filter With 2-Hz Pole Frequency. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018;27:294–303. doi: 10.1109/TVLSI.2018.2878017. DOI
Li Y.-A. A series of new circuits based on CFTAs. AEU-Int. J. Electron. Commun. 2012;66:587–592. doi: 10.1016/j.aeue.2011.11.011. DOI
Kumar A., Paul S.K. Current mode first order universal filter and multiphase sinusoidal oscillator. AEU-Int. J. Electron. Commun. 2017;81:37–49. doi: 10.1016/j.aeue.2017.07.004. DOI
Maheshwari S. Tuning approach for first-order filters and new current-mode circuit example. IET Circuits Devices Syst. 2018;12:478–485. doi: 10.1049/iet-cds.2017.0431. DOI
Chaturvedi B., Mohan J., Jitender, Kumar A. A Novel Realization of Current-Mode First Order Universal Filter; Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 2–3 February 2017; pp. 623–627. DOI
Horng J.-W., Wu C.-M., Zheng J.-H., Li S.-Y. Current-Mode First-Order Highpass, Lowpass, and Allpass Filters Using Two ICCIIs; Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan); Taoyuan, Taiwan. 28–30 September 2020; pp. 1–2. DOI
Yucel F. A DVCC-Based Current-Mode First-Order Universal Filter. J. Circuits Syst. Comput. 2021;30:2150305. doi: 10.1142/S0218126621503059. DOI
Yuce E., Minaei S. A new first-order universal filter consisting of two ICCII + s and a grounded capacitor. AEU-Int. J. Electron. Commun. 2021;137:153802. doi: 10.1016/j.aeue.2021.153802. DOI
Herencsar N., Koton J., Sagbas M., Ayten U.E. New tunable resistorless CM first-order filter based on single CBTA and grounded capacitor; Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS); Abu Dhabi, United Arab Emirates. 16–19 October 2016; pp. 1–4. DOI
Safari L., Yuce E., Minaei S. A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectron. J. 2017;67:101–110. doi: 10.1016/j.mejo.2017.07.015. DOI
Agrawal D., Maheshwari S. An Active-C Current-Mode Universal First-Order Filter and Oscillator. J. Circuits Syst. Comput. 2019;28:1950219. doi: 10.1142/S0218126619502190. DOI
Chaturvedi B., Kumar A., Mohan J. Low Voltage Operated Current-Mode First-Order Universal Filter and Sinusoidal Oscillator Suitable for Signal Processing Applications. AEU-Int. J. Electron. Commun. 2018;99:110–118. doi: 10.1016/j.aeue.2018.11.025. DOI
Singh P., Varshney V., Kumar A., Nagaria R. Electronically Tunable First Order Universal Filter based on CCDDCCTA; Proceedings of the 2019 IEEE Conference on Information and Communication Technology; Allahabad, India. 6–8 December 2019; pp. 1–6. DOI
Chaturvedi B., Mohan J., Jitender, Kumar A. Resistorless Realization of First-Order Current Mode Universal Filter. Radio Sci. 2020;55:1–10. doi: 10.1029/2019RS006932. DOI
Mohan J., Chaturvedi B. Jitender CMOS Compatible First-Order Current Mode Universal Filter Structure and its Possible Tunable Variant. J. Circuits Syst. Comput. 2022;31:2250242. doi: 10.1142/S0218126622502425. DOI
Kumar A., Kumar S., Elkamchouchi D.H., Urooj S. Fully Differential Current-Mode Configuration for the Realization of First-Order Filters with Ease of Cascadability. Electronics. 2022;11:2072. doi: 10.3390/electronics11132072. DOI
Myderrizi I., Minaei S., Yuce E. An Electronically Fine-Tunable Multi-Input–Single-Output Universal Filter. IEEE Trans. Circuits Syst. II Express Briefs. 2011;58:356–360. doi: 10.1109/TCSII.2011.2158168. DOI
Abaci A., Yuce E. Voltage-mode first-order universal filter realizations based on subtractors. AEU-Int. J. Electron. Commun. 2018;90:140–146. doi: 10.1016/j.aeue.2018.04.017. DOI
Banerjee K., Bnadopadhyaya P.K., Sarkar B., Biswas A. Multi Input Single Output using Operational Transresistance Amplifier as First Order Filter; Proceedings of the 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS); Kolkata, India. 18–19 July 2020; pp. 271–274. DOI
Kumari S., Nand D. DDCC-based MISO type Voltage-mode First-order Universal Filter; Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT); Hubli, India. 24–26 June 2022; pp. 1–6. DOI
Dogan M., Yuce E. A first-order universal filter including a grounded capacitor and two CFOAs. Analog. Integr. Circuits Signal Process. 2022;112:379–390. doi: 10.1007/s10470-022-02021-2. DOI
Chinpark K., Jaikla W., Siripongdee S., Suwanjan P. Electronically controllable first-order multifuntion filter with using single active building block; Proceedings of the 2018 3rd International Conference on Control and Robotics Engineering (ICCRE); Nagoya, Japan. 20–23 April 2018; pp. 192–195. DOI
Moonmuang P., Pukkalanun T., Tangsrirat W. Voltage differencing buffered amplifier-based electronically tunable grounded capacitance multiplier; Proceedings of the 8th International Conference on Informatics, Environment, Energy and Applications; Osaka, Japan. 16–19 March 2019; pp. 208–211. DOI
Jaikla W., Talabthong P., Siripongdee S., Supavarasuwat P., Suwanjan P., Chaichana A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019;91:22–35. doi: 10.1016/j.mejo.2019.07.009. DOI
Jaikla W., Buakhong U., Siripongdee S., Khateb F., Sotner R., Silapan P., Suwanjan P., Chaichana A. Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors. 2021;21:7376. doi: 10.3390/s21217376. PubMed DOI PMC
Barile G., Safari L., Pantoli L., Stornelli V., Ferri G. Electronically Tunable First Order AP/LP and LP/HP Filter Topologies Using Electronically Controllable Second Generation Voltage Conveyor (CVCII) Electronics. 2021;10:822. doi: 10.3390/electronics10070822. DOI
Duangmalai D., Suwanjan P. The voltage-mode first order universal filter using single voltage differencing differential input buffered amplifier with electronic controllability. Int. J. Electr. Comput. Eng. (IJECE) 2022;12:1308–1323. doi: 10.11591/ijece.v12i2.pp1308-1323. DOI
Singh P., Nagaria R.K. Voltage mode and trans-admittance mode first-order universal filters employing DV-EXCCCII. Aust. J. Electr. Electron. Eng. 2022;19:396–406. doi: 10.1080/1448837X.2022.2088571. DOI
Dogan M., Yuce E., Dicle Z. CFOA-based first-order voltage-mode universal filters. AEU-Int. J. Electron. Commun. 2023;161:154550. doi: 10.1016/j.aeue.2023.154550. DOI
Chaturvedi B., Kumar A. Electronically Tunable First-Order Filters and Dual-Mode Multiphase Oscillator. Circuits Syst. Signal Process. 2018;38:2–25. doi: 10.1007/s00034-018-0849-x. DOI
Rohilla K., Pushkar K.L., Kumar R., Raj A. Resistorless First-Order Universal Filter Structures Employing OTAs with Independent Controllability of Gain and Pole Frequency. IETE J. Res. 2022:1–21. doi: 10.1080/03772063.2022.2132305. DOI
Raj A., Bhaskar D.R., Senani R., Kumar P. Extension of recently proposed two-CFOA-GC all pass filters to the realisation of first order universal active filters. AEU-Int. J. Electron. Commun. 2022;146:154119. doi: 10.1016/j.aeue.2022.154119. DOI
Raj A. Mixed-Mode Electronically-Tunable First-Order Universal Filter Structure Employing Operational Transconductance Amplifiers. J. Circuits Syst. Comput. 2022;31:2250234. doi: 10.1142/S0218126622502346. DOI
Bhaskar D.R., Raj A., Senani R., Kumar P. CFOA-based simple mixed-mode first-order universal filter configurations. Int. J. Circuit Theory Appl. 2022;50:2631–2641. doi: 10.1002/cta.3289. DOI
Roongmuanpha N., Likhitkitwoerakul N., Fukuhara M., Tangsrirat W. Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors. 2023;23:2759. doi: 10.3390/s23052759. PubMed DOI PMC
Varol A., Yucel F., Cakir A. A New Electronically Tunable Transimpedance-Mode OTA-Based First-Order Universal Filter and Its Quadrature Oscillator Application. J. Circuits Syst. Comput. 2022 doi: 10.1142/S0218126623501840. DOI
Kulej T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2014;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI
Kulej T., Khateb F. Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS. Int. J. Circuit Theory Appl. 2018;46:1129–1143. doi: 10.1002/cta.2465. DOI
Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs. 2022;69:2046–2050. doi: 10.1109/TCSII.2022.3144095. DOI
Khateb F., Kumngern M., Kulej T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access. 2023;11:49806–49818. doi: 10.1109/ACCESS.2023.3277252. DOI