• This record comes from PubMed

0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs

. 2023 Jun 26 ; 23 (13) : . [epub] 20230626

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This paper presents a versatile first-order analog filter using differential difference transconductance amplifiers (DDTAs). The DDTA employs the bulk-driven (BD) multiple-input MOS transistors technique (MI-MOST) operating in the subthreshold region. This results in low-voltage and low-power operational capability. Therefore, the DDTA, designed using 130 nm CMOS technology from UMC in the Cadence environment, operates with 0.3 V and consumes 357.4 nW. Unlike previous works, the proposed versatile first-order analog filter provides first-order transfer functions of low-pass, high-pass, and all-pass filters within a single topology. The non-inverting, inverting, and voltage gain of the transfer functions are available for all filters. Furthermore, the proposed structure provides high-input and low-output impedance, which is required for voltage-mode circuits. The pole frequency and voltage gain of the filters can be electronically controlled. The total harmonic distortion of the low-pass filter was calculated as -39.97 dB with an applied sine wave input signal of 50 mVpp@ 50 Hz. The proposed filter has been used to realize a quadrature oscillator to confirm the advantages of the new structure.

See more in PubMed

Smith K., Sedra A. The current conveyor—A new circuit building block. Proc. IEEE. 1968;56:1368–1369. doi: 10.1109/PROC.1968.6591. DOI

Chiu W., Liu S.-I., Tsao H.-W., Chen J.-J. CMOS differential difference current conveyors and their applications. IEE Proc.-Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI

Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid-state Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI

Pandey N., Paul S.K. Differential Difference Current Conveyor Transconductance Amplifier: A New Analog Building Block for Signal Processing. J. Electr. Comput. Eng. 2011;2011:361384. doi: 10.1155/2011/361384. DOI

Kumngern M. DDTA and DDCCTA: New active elements for analog signal processing; Proceedings of the 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA); Kuala Lumpur, Malaysia. 5–6 November 2012; pp. 141–145. DOI

Jantakun A., Pisutthipong N., Siripruchyanun M. A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs; Proceedings of the 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology; Chonburi, Thailand. 6–9 May 2009; pp. 560–563. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC

Kumngern M., Khateb F., Kulej T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access. 2023;11:9957–9966. doi: 10.1109/ACCESS.2023.3240520. DOI

Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC

Kulej T., Kumngern M., Khateb F., Arbet D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors. 2023;23:688. doi: 10.3390/s23020688. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Ranjan R.K. 0.5 V multiple-input multiple-output differential difference transconductance amplifier and its applications to shadow filter and oscillator. IEEE Access. 2023;11:31212–31227. doi: 10.1109/ACCESS.2023.3260146. DOI

Palani R.K., Sturm M., Harjani R. A 1.56mW 50MHz 3rd-order filter with current-mode active-RC biquad and 33dBm IIP3 in 65nm CMOS; Proceedings of the 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC); Singapore. 11–13 November 2013; pp. 373–376. DOI

Hanumantha G.R., Sreenivasulu P., Rekha S., Bhat M.S. A 0.3-V, 2.4-nW, and 100-Hz fourth-order LPF for ECG signal processing. Int. J. Circuit Theory Appl. 2020;48:1853–1863. doi: 10.1002/cta.2839. DOI

Abuan D.D., Perez G.F., Medrano M.B., Velasco C.P. Wide Bandpass Filter Composed of First-order and Second-Order Active High Pass Filters Simulated Using MATLAB and Multisim Live; Proceedings of the 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS); Tashkent, Uzbekistan. 10–12 October 2022; pp. 403–408. DOI

Isaksen J., Leber R., Schmid R., Schmid H.-J., Generali G., Abacherli R. The first-order high-pass filter influences the automatic measurements of the electrocardiogram; Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); Shanghai, China. 20–25 March 2016; pp. 784–788. DOI

Comer D., Gonzalez J. A high-frequency integrable bandpass filter configuration. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1997;44:856–861. doi: 10.1109/82.633445. DOI

Gift S. The application of all-pass filters in the design of multiphase sinusoidal systems. Microelectron. J. 2000;31:9–13. doi: 10.1016/S0026-2692(99)00084-1. DOI

Garakoui S.K., Klumperink E.A.M., Nauta B., Vanvliet F.E. Frequency Limitations of First-Order gm−RC All-Pass Delay Circuits. IEEE Trans. Circuits Syst. II Express Briefs. 2013;60:572–576. doi: 10.1109/tcsii.2013.2268418. DOI

Paul A., Ramirez-Angulo J., Lopez-Martin A.J., Carvajal R.G. CMOS First-Order All-Pass Filter With 2-Hz Pole Frequency. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018;27:294–303. doi: 10.1109/TVLSI.2018.2878017. DOI

Li Y.-A. A series of new circuits based on CFTAs. AEU-Int. J. Electron. Commun. 2012;66:587–592. doi: 10.1016/j.aeue.2011.11.011. DOI

Kumar A., Paul S.K. Current mode first order universal filter and multiphase sinusoidal oscillator. AEU-Int. J. Electron. Commun. 2017;81:37–49. doi: 10.1016/j.aeue.2017.07.004. DOI

Maheshwari S. Tuning approach for first-order filters and new current-mode circuit example. IET Circuits Devices Syst. 2018;12:478–485. doi: 10.1049/iet-cds.2017.0431. DOI

Chaturvedi B., Mohan J., Jitender, Kumar A. A Novel Realization of Current-Mode First Order Universal Filter; Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN); Noida, India. 2–3 February 2017; pp. 623–627. DOI

Horng J.-W., Wu C.-M., Zheng J.-H., Li S.-Y. Current-Mode First-Order Highpass, Lowpass, and Allpass Filters Using Two ICCIIs; Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan); Taoyuan, Taiwan. 28–30 September 2020; pp. 1–2. DOI

Yucel F. A DVCC-Based Current-Mode First-Order Universal Filter. J. Circuits Syst. Comput. 2021;30:2150305. doi: 10.1142/S0218126621503059. DOI

Yuce E., Minaei S. A new first-order universal filter consisting of two ICCII + s and a grounded capacitor. AEU-Int. J. Electron. Commun. 2021;137:153802. doi: 10.1016/j.aeue.2021.153802. DOI

Herencsar N., Koton J., Sagbas M., Ayten U.E. New tunable resistorless CM first-order filter based on single CBTA and grounded capacitor; Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS); Abu Dhabi, United Arab Emirates. 16–19 October 2016; pp. 1–4. DOI

Safari L., Yuce E., Minaei S. A new ICCII based resistor-less current-mode first-order universal filter with electronic tuning capability. Microelectron. J. 2017;67:101–110. doi: 10.1016/j.mejo.2017.07.015. DOI

Agrawal D., Maheshwari S. An Active-C Current-Mode Universal First-Order Filter and Oscillator. J. Circuits Syst. Comput. 2019;28:1950219. doi: 10.1142/S0218126619502190. DOI

Chaturvedi B., Kumar A., Mohan J. Low Voltage Operated Current-Mode First-Order Universal Filter and Sinusoidal Oscillator Suitable for Signal Processing Applications. AEU-Int. J. Electron. Commun. 2018;99:110–118. doi: 10.1016/j.aeue.2018.11.025. DOI

Singh P., Varshney V., Kumar A., Nagaria R. Electronically Tunable First Order Universal Filter based on CCDDCCTA; Proceedings of the 2019 IEEE Conference on Information and Communication Technology; Allahabad, India. 6–8 December 2019; pp. 1–6. DOI

Chaturvedi B., Mohan J., Jitender, Kumar A. Resistorless Realization of First-Order Current Mode Universal Filter. Radio Sci. 2020;55:1–10. doi: 10.1029/2019RS006932. DOI

Mohan J., Chaturvedi B. Jitender CMOS Compatible First-Order Current Mode Universal Filter Structure and its Possible Tunable Variant. J. Circuits Syst. Comput. 2022;31:2250242. doi: 10.1142/S0218126622502425. DOI

Kumar A., Kumar S., Elkamchouchi D.H., Urooj S. Fully Differential Current-Mode Configuration for the Realization of First-Order Filters with Ease of Cascadability. Electronics. 2022;11:2072. doi: 10.3390/electronics11132072. DOI

Myderrizi I., Minaei S., Yuce E. An Electronically Fine-Tunable Multi-Input–Single-Output Universal Filter. IEEE Trans. Circuits Syst. II Express Briefs. 2011;58:356–360. doi: 10.1109/TCSII.2011.2158168. DOI

Abaci A., Yuce E. Voltage-mode first-order universal filter realizations based on subtractors. AEU-Int. J. Electron. Commun. 2018;90:140–146. doi: 10.1016/j.aeue.2018.04.017. DOI

Banerjee K., Bnadopadhyaya P.K., Sarkar B., Biswas A. Multi Input Single Output using Operational Transresistance Amplifier as First Order Filter; Proceedings of the 2020 IEEE VLSI DEVICE CIRCUIT AND SYSTEM (VLSI DCS); Kolkata, India. 18–19 July 2020; pp. 271–274. DOI

Kumari S., Nand D. DDCC-based MISO type Voltage-mode First-order Universal Filter; Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT); Hubli, India. 24–26 June 2022; pp. 1–6. DOI

Dogan M., Yuce E. A first-order universal filter including a grounded capacitor and two CFOAs. Analog. Integr. Circuits Signal Process. 2022;112:379–390. doi: 10.1007/s10470-022-02021-2. DOI

Chinpark K., Jaikla W., Siripongdee S., Suwanjan P. Electronically controllable first-order multifuntion filter with using single active building block; Proceedings of the 2018 3rd International Conference on Control and Robotics Engineering (ICCRE); Nagoya, Japan. 20–23 April 2018; pp. 192–195. DOI

Moonmuang P., Pukkalanun T., Tangsrirat W. Voltage differencing buffered amplifier-based electronically tunable grounded capacitance multiplier; Proceedings of the 8th International Conference on Informatics, Environment, Energy and Applications; Osaka, Japan. 16–19 March 2019; pp. 208–211. DOI

Jaikla W., Talabthong P., Siripongdee S., Supavarasuwat P., Suwanjan P., Chaichana A. Electronically controlled voltage mode first order multifunction filter using low-voltage low-power bulk-driven OTAs. Microelectron. J. 2019;91:22–35. doi: 10.1016/j.mejo.2019.07.009. DOI

Jaikla W., Buakhong U., Siripongdee S., Khateb F., Sotner R., Silapan P., Suwanjan P., Chaichana A. Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors. 2021;21:7376. doi: 10.3390/s21217376. PubMed DOI PMC

Barile G., Safari L., Pantoli L., Stornelli V., Ferri G. Electronically Tunable First Order AP/LP and LP/HP Filter Topologies Using Electronically Controllable Second Generation Voltage Conveyor (CVCII) Electronics. 2021;10:822. doi: 10.3390/electronics10070822. DOI

Duangmalai D., Suwanjan P. The voltage-mode first order universal filter using single voltage differencing differential input buffered amplifier with electronic controllability. Int. J. Electr. Comput. Eng. (IJECE) 2022;12:1308–1323. doi: 10.11591/ijece.v12i2.pp1308-1323. DOI

Singh P., Nagaria R.K. Voltage mode and trans-admittance mode first-order universal filters employing DV-EXCCCII. Aust. J. Electr. Electron. Eng. 2022;19:396–406. doi: 10.1080/1448837X.2022.2088571. DOI

Dogan M., Yuce E., Dicle Z. CFOA-based first-order voltage-mode universal filters. AEU-Int. J. Electron. Commun. 2023;161:154550. doi: 10.1016/j.aeue.2023.154550. DOI

Chaturvedi B., Kumar A. Electronically Tunable First-Order Filters and Dual-Mode Multiphase Oscillator. Circuits Syst. Signal Process. 2018;38:2–25. doi: 10.1007/s00034-018-0849-x. DOI

Rohilla K., Pushkar K.L., Kumar R., Raj A. Resistorless First-Order Universal Filter Structures Employing OTAs with Independent Controllability of Gain and Pole Frequency. IETE J. Res. 2022:1–21. doi: 10.1080/03772063.2022.2132305. DOI

Raj A., Bhaskar D.R., Senani R., Kumar P. Extension of recently proposed two-CFOA-GC all pass filters to the realisation of first order universal active filters. AEU-Int. J. Electron. Commun. 2022;146:154119. doi: 10.1016/j.aeue.2022.154119. DOI

Raj A. Mixed-Mode Electronically-Tunable First-Order Universal Filter Structure Employing Operational Transconductance Amplifiers. J. Circuits Syst. Comput. 2022;31:2250234. doi: 10.1142/S0218126622502346. DOI

Bhaskar D.R., Raj A., Senani R., Kumar P. CFOA-based simple mixed-mode first-order universal filter configurations. Int. J. Circuit Theory Appl. 2022;50:2631–2641. doi: 10.1002/cta.3289. DOI

Roongmuanpha N., Likhitkitwoerakul N., Fukuhara M., Tangsrirat W. Single VDGA-Based Mixed-Mode Electronically Tunable First-Order Universal Filter. Sensors. 2023;23:2759. doi: 10.3390/s23052759. PubMed DOI PMC

Varol A., Yucel F., Cakir A. A New Electronically Tunable Transimpedance-Mode OTA-Based First-Order Universal Filter and Its Quadrature Oscillator Application. J. Circuits Syst. Comput. 2022 doi: 10.1142/S0218126623501840. DOI

Kulej T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2014;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI

Kulej T., Khateb F. Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS. Int. J. Circuit Theory Appl. 2018;46:1129–1143. doi: 10.1002/cta.2465. DOI

Kulej T., Khateb F., Arbet D., Stopjakova V. A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs. 2022;69:2046–2050. doi: 10.1109/TCSII.2022.3144095. DOI

Khateb F., Kumngern M., Kulej T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access. 2023;11:49806–49818. doi: 10.1109/ACCESS.2023.3277252. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...