• This record comes from PubMed

0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers

. 2023 Dec 20 ; 24 (1) : . [epub] 20231220

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) technique to maintain a single differential pair, thereby achieving simple structure with minimal power consumption. In a single topology, the proposed filter can provide five standard filtering functions (low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current (CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is needed. The natural frequency of all filtering functions can be electronically controlled by a setting current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that require extremely low supply voltages and nano-watt power consumption. For the VM low-pass filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC CMOS technology.

See more in PubMed

Wyszynski A., Schaumann R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992;28:217–220. doi: 10.1049/el:19920135. DOI

Chiang D.H., Schaumann R. A CMOS fully-balanced continuous-time IFLF filter design for read/write channels; Proceedings of the 1996 IEEE International Symposium on Circuits and Systems, Circuits and Systems Connecting the World, ISCAS 96; Atlanta, GA, USA. 15 May 1996; pp. 167–170. DOI

Gopinathan V., Tsividis Y.P., Tan K.S., Hester R.K. Design considerations for high-frequency continuous-time filters and implementation of an antialiasing filter for digital video. IEEE J. Solid State Circuits. 1990;25:1368–1378. doi: 10.1109/4.62164. DOI

Glinianowicz J., Jakusz J., Szczepanski S., Sun Y. High-frequency two-input CMOS OTA for continuous-time filter applications. IEEE Proc. Circuits Devices Syst. 2000;147:13. doi: 10.1049/ip-cds:20000317. DOI

Sackinger E., Guggenbuhl W. A versatile building block: The CMOS differential difference amplifier. IEEE J. Solid State Circuits. 1987;22:287–294. doi: 10.1109/JSSC.1987.1052715. DOI

Huang S.C., Ismail M., Zarabadi S.R. A wide range differential difference amplifier: A basic block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1993;40:289–301. doi: 10.1109/82.227369. DOI

Zarabadi S.R., Larsen F., Ismail M. A reconfigurable op-amp/DDA CMOS amplifier architecture. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1992;39:484–487. doi: 10.1109/81.153646. DOI

Czarnul Z., Takagi S., Fujii N. Common-mode feedback circuit with differential-difference amplifier. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994;41:243–246. doi: 10.1109/81.273924. DOI

Duque-Carrillo J.F., Torelli G., Perez-Aloe R., Valverde J.M., Maloberti F. Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995;42:190–192. doi: 10.1109/81.376865. DOI

Chiu W., Liu S.I., Tsao H.W., Chen J.J. CMOS differential difference current conveyors and their applications. IEEE Proc. Circuits Devices Syst. 1996;143:91–96. doi: 10.1049/ip-cds:19960223. DOI

Elwan H.O., Soliman A.M. Novel CMOS differential voltage current conveyor and its applications. IEEE Proc. Circuits Devices Syst. 1997;144:195–200. doi: 10.1049/ip-cds:19971081. DOI

Mahmoud S.A., Soliman A.M. The differential difference operational floating amplifier: A new block for analog signal processing in MOS technology. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1998;45:148–158. doi: 10.1109/82.659468. DOI

Kumngern M. CMOS differential difference voltage follower transconductance amplifier; Proceedings of the 2015 IEEE International Circuits and Systems Symposium (ICSyS); Langkawi, Malaysia. 2–4 September 2015; pp. 133–136. DOI

Rana P., Ranjan A. Odd- and even-order electronically controlled wave active filter employing differential difference trans-conductance amplifier (DDTA) Int. J. Electron. 2021;108:1623–1651. doi: 10.1080/00207217.2020.1870737. DOI

Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst. Signal Process. 2019;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI

Khateb F., Kulej T., Veldandi H., Jaikla W. Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU Int. J. Electron. Commun. 2019;100:32–38. doi: 10.1016/j.aeue.2018.12.023. DOI

Khateb F., Kulej T., Kumngern M., Jaikla W., Ranjan R.K. Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU Int. J. Electron. Commun. 2019;108:19–28. doi: 10.1016/j.aeue.2019.06.003. DOI

Khateb F., Kulej T., Akbari M., Tang K.T. A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI

Khateb F., Kumngern M., Kulej T., Akbari M., Stopjakova V. 0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors. 2022;22:8619. doi: 10.3390/s22228619. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Yavari M. 0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier. Sensors. 2023;23:2146. doi: 10.3390/s23042146. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T. 0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access. 2023;11:49806–49818. doi: 10.1109/ACCESS.2023.3277252. DOI

Kumngern M., Khateb F., Kulej T. Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU Int. J. Electron. Commun. 2020;123:153310. doi: 10.1016/j.aeue.2020.153310. DOI

Kumngern M., Khateb F., Kulej T. 0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst. Signal Process. 2020;39:3189–3205. doi: 10.1007/s00034-019-01292-x. DOI

Khateb F., Kumngern M., Kulej T., Psychalinos C. 0.5 V Universal Filter Based on Multiple-Input FDDAs. Circuits Syst. Signal Process. 2019;38:5896–5907. doi: 10.1007/s00034-019-01147-5. DOI

Abuelma’Atti M.T., Bentrcia A., Al-Shahrani S.M. A novel mixed-mode current-conveyor-based filter. Int. J. Electron. 2004;91:191–197. doi: 10.1080/00207210410001677039. DOI

Abuelma’Atti M.T., Bentrcia A. A Novel Mixed-Mode CCII-Based Filter. Act. Passiv. Electron. Components. 2004;27:197–205. doi: 10.1080/08827510310001648933. DOI

Lee C.-N., Chang C.-M. Single FDCCII-based mixed-mode biquad filter with eight outputs. AEU Int. J. Electron. Commun. 2008;63:736–742. doi: 10.1016/j.aeue.2008.06.015. DOI

Minaei S., Ibrahim M.A. A mixed-mode KHN-biquad using DVCC and grounded passive elements suitable for direct cascading. Int. J. Circuit Theory Appl. 2008;37:793–810. doi: 10.1002/cta.493. DOI

Lee C.-N. Fully Cascadable Mixed-Mode Universal Filter Biquad Using DDCCs and Grounded Passive Components. J. Circuits Syst. Comput. 2011;20:607–620. doi: 10.1142/S0218126611007499. DOI

Liao W.B., Gu J.C. SIMO type universal mixed-mode biquadratic filter. Indian J. Eng. Mater. Sci. 2011;18:443–448.

Ghosh K., Ray B.N. CCII-Based Nth-Order Mixed Mode Elliptic Filter with Grounded R and C. J. Circuits Syst. Comput. 2015;24:1550035. doi: 10.1142/S0218126615500358. DOI

Lee C.-N. Independently tunable mixed-mode universal biquad filter with versatile input/output functions. AEU Int. J. Electron. Commun. 2016;70:1006–1019. doi: 10.1016/j.aeue.2016.04.006. DOI

Lee C.-N. Mixed-Mode Universal Biquadratic Filter with No Need of Matching Conditions. J. Circuits Syst. Comput. 2016;25:1650106. doi: 10.1142/S0218126616501061. DOI

Tsukutani T., Kinugasa Y., Yabuki N. A novel mixed-mode universal biquad employing plus current output DVCCs. Adv. Sci. Technol. Eng. Syst. J. 2018;3:236–240. doi: 10.25046/aj030423. DOI

Singh V.K., Singh A.K., Bhaskar D.R., Senani R. Novel mixed-mode universal biquad configuration. IEICE Electron. Express. 2005;2:548–553. doi: 10.1587/elex.2.548. DOI

Pandey N., Paul S.K., Bhattacharyya A., Jain S.B. A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express. 2006;3:115–121. doi: 10.1587/elex.3.115. DOI

Yuce E. Fully integrable mixed-mode universal biquad with specific application of the CFOA. AEU Int. J. Electron. Commun. 2010;64:304–309. doi: 10.1016/j.aeue.2008.09.010. DOI

Shah N.A., Malik M.A. Multifunction mixed-mode filter using FTFNs. Analog. Integr. Circuits Signal Process. 2006;47:339–343. doi: 10.1007/s10470-006-5539-0. DOI

Abuelma’Atti M.T. A Novel Mixed-Mode Current-Controlled Current-Conveyor-Based Filter. Act. Passiv. Electron. Components. 2003;26:185–191. doi: 10.1080/1042015031000073841. DOI

Zhijun L. Mixed-mode universal filter using MCCCII. AEU Int. J. Electron. Commun. 2009;63:1072–1075. doi: 10.1016/j.aeue.2008.09.003. DOI

Pandey N., Paul S.K. Mixed Mode Universal Filter. J. Circuits Syst. Comput. 2013;22:1250064. doi: 10.1142/S0218126612500648. DOI

Agrawal D., Maheshwari S. High-Performance Electronically Tunable Analog Filter Using a Single EX-CCCII. Circuits Syst. Signal Process. 2021;40:1127–1151. doi: 10.1007/s00034-020-01530-7. DOI

Maheshwari S., Singh S.V., Chauhan D.S. Electronically tunable low-voltage mixed-mode universal biquad filter. IET Circuits Devices Syst. 2011;5:149–158. doi: 10.1049/iet-cds.2010.0061. DOI

Faseehuddin M., Albrni M.A., Herencsar N., Sampe J., Ali S.H.M. Novel Electronically Tunable Biquadratic Mixed- Mode Universal Filter Capable of Operating in MISO and SIMO Configurations. Inf. MIDEM. 2020;50:189–204. doi: 10.33180/infmidem2020.304. DOI

Singh S.V., Tomar R.S., Goswami M. A Current Tunable Mixed Mode ZC-CCTAs Based Resistor Less Universal Filter. J. Circuits Syst. Comput. 2021;30:2150225. doi: 10.1142/S021812662150225X. DOI

Chen H.-P., Yang W.S. Electronically Tunable Current Controlled Current Conveyor Transconductance Amplifier-Based Mixed-Mode Biquadratic Filter with Resistorless and Grounded Capacitors. Appl. Sci. 2017;7:244. doi: 10.3390/app7030244. DOI

Yesil A., Kacar F. Electronically tunable resistorless mixed-mode biquad filters. Radioengineering. 2013;22:1016–1125.

Faseehuddin M., Herencsar N., Albrni M.A., Shireen S., Sampe J. Electronically tunable mixed mode universal filter employing grounded capacitors utilizing highly versatile VD-DVCC. Circuit World. 2022;48:511–528. doi: 10.1108/CW-05-2020-0080. DOI

Mishra R., Mishra G.R., Mishra S.O., Faseehuddin M. Electronically Tunable Mixed Mode Universal Filter Employing Grounded Passive Components. Inf. MIDEM J. Microelectron. Electron. Components Mater. 2022;52:105–115. doi: 10.33180/infmidem2022.204. DOI

Roongmuanpha N., Faseehuddin M., Herencsar N., Tangsrirat W. Tunable Mixed-Mode Voltage Differencing Buffered Amplifier-Based Universal Filter with Independently High-Q Factor Controllability. Appl. Sci. 2021;11:9606. doi: 10.3390/app11209606. DOI

Faseehuddin M., Herencsar N., Shireen S., Tangsrirat W., Ali S.H.M. Voltage Differencing Buffered Amplifier-Based Novel Truly Mixed-Mode Biquadratic Universal Filter with Versatile Input/Output Features. Appl. Sci. 2022;12:1229. doi: 10.3390/app12031229. DOI

Abuelma’Atti M.T., Bentrcia A. A novel mixed-mode OTA-C universal filter. Int. J. Electron. 2005;92:375–383. doi: 10.1080/08827510412331295009. DOI

Bhaskar D.R., Singh A.K., Sharma R.K., Senani R. New OTA-C universal current-mode/trans-admittance biquads. IEICE Electron. Express. 2005;2:8–13. doi: 10.1587/elex.2.8. DOI

Chen H.-P., Liao Y.-Z., Lee W.-T. Tunable mixed-mode OTA-C universal filter. Analog. Integr. Circuits Signal Process. 2008;58:135–141. doi: 10.1007/s10470-008-9228-z. DOI

Lee C.-N. Multiple-Mode OTA-C Universal Biquad Filters. Circuits Syst. Signal Process. 2009;29:263–274. doi: 10.1007/s00034-009-9145-0. DOI

Zanjani S.M.A., Dousti M., Dolatshahi M. Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology. IET Circuits Devices Syst. 2018;12:681–688. doi: 10.1049/iet-cds.2018.5158. DOI

Parvizi M., Taghizadeh A., Mahmoodian H., Kozehkanani Z.D. A Low-Power Mixed-Mode SIMO Universal Gm–C Filter. J. Circuits Syst. Comput. 2017;26:1750164. doi: 10.1142/S021812661750164X. DOI

Parvizi M. Design of a new low power MISO multi-mode universal biquad OTA-C filter. Int. J. Electron. 2019;106:440–454. doi: 10.1080/00207217.2018.1540064. DOI

Bhaskar D.R., Raj A., Kumar P. Mixed-Mode Universal Biquad Filter Using OTAs. J. Circuits Syst. Comput. 2020;29:2050162. doi: 10.1142/S0218126620501625. DOI

Namdari A., Dolatshahi M. Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog. Integr. Circuits Signal Process. 2022;111:169–188. doi: 10.1007/s10470-022-01996-2. DOI

Kumngern M., Suksaibul P., Khateb F., Kulej T. 1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors. 2022;22:3535. doi: 10.3390/s22093535. PubMed DOI PMC

Kumngern M., Khateb F., Kulej T. 0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access. 2023;11:9957–9966. doi: 10.1109/ACCESS.2023.3240520. DOI

Khateb F., Kumngern M., Kulej T., Biolek D. 0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access. 2022;10:43209–43220. doi: 10.1109/ACCESS.2022.3167700. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Biolek D. 0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors. 2022;22:2655. doi: 10.3390/s22072655. PubMed DOI PMC

Kulej T., Kumngern M., Khateb F., Arbet D. 0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors. 2023;23:688. doi: 10.3390/s23020688. PubMed DOI PMC

Khateb F., Kumngern M., Kulej T., Ranjan R.K. 0.5 V Multiple-Input Multiple-Output Differential Difference Transconductance Amplifier and Its Applications to Shadow Filter and Oscillator. IEEE Access. 2023;11:31212–31227. doi: 10.1109/ACCESS.2023.3260146. DOI

Kumngern M., Khateb F., Kulej T., Steffan P. 0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors. 2023;23:5945. doi: 10.3390/s23135945. PubMed DOI PMC

Kumngern M., Suksaibul P., Khateb F., Kulej T. Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access. 2022;10:68965–68980. doi: 10.1109/ACCESS.2022.3186435. DOI

Kulej T. 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 2013;7:352–360. doi: 10.1049/iet-cds.2012.0372. DOI

Kulej T. 0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits Syst. Signal Process. 2015;34:1167–1185. doi: 10.1007/s00034-014-9906-2. DOI

Kulej T., Khateb F. 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 2015;46:362–369. doi: 10.1016/j.mejo.2015.02.009. DOI

Krummenacher F., Joehl N. A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid State Circuits. 1988;23:750–758. doi: 10.1109/4.315. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...