0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36850747
PubMed Central
PMC9961682
DOI
10.3390/s23042146
PII: s23042146
Knihovny.cz E-zdroje
- Klíčová slova
- analog circuit, operational transconductance amplifier, shadow filter, shadow oscillator,
- Publikační typ
- časopisecké články MeSH
This paper presents a low-frequency shadow sinusoidal oscillator using a bulk-driven multiple-input operational transconductance amplifier (MI-OTA) with extremely low-voltage supply and nano-power consumption. The proposed oscillator is composed using two-input single-output biquad filter and amplifiers. The condition and the frequency of oscillation of the shadow oscillator can be controlled electronically and independently using amplifiers. The circuit is designed in Cadence program using 0.18 µm CMOS technology from TSMC. The voltage supply is 0.5 V and the power consumption of the oscillator is 54 nW. The total harmonic distortion (THD) of the output signals is around 0.3% for 202 Hz. The simulation results are in accordance with theory.
Department of Electrical Engineering Czestochowa University of Technology 42 201 Czestochowa Poland
Department of Microelectronics Brno University of Technology Technická 10 601 90 Brno Czech Republic
Zobrazit více v PubMed
Lakys Y., Fabre A. Shadow filters: New family of second-order filters. Electron. Lett. 2010;46:276–277. doi: 10.1049/el.2010.3249. DOI
Biolkova V., Biolek D. Shadow filters for orthogonal modification of characteristic frequency and bandwidth. Electron. Lett. 2010;46:830–831. doi: 10.1049/el.2010.0717. DOI
Abuelma’Atti M.T., Almutairi N.R. New current-feedack operational-amplifier based shadow filters. Analog. Integr. Circuits Signal Process. 2016;86:471–480. doi: 10.1007/s10470-016-0691-7. DOI
Alaybeyoğlu E., Kuntman H. A new frequency agile filter structure employing CDTA for positioning systems and secure communications. Analog. Integr. Circuits Signal Process. 2016;89:693–703. doi: 10.1007/s10470-016-0770-9. DOI
Singh D., Paul S.K. Realization of current mode universal shadow filter. AEU Int. J. Electron. Commun. 2020;117:153088. doi: 10.1016/j.aeue.2020.153088. DOI
Nand D., Pandey N. New Configuration for OFCC-Based CM SIMO Filter and its Application as Shadow Filter. Arab. J. Sci. Eng. 2018;43:3011–3022. doi: 10.1007/s13369-017-3058-1. DOI
Khateb F., Jaikla W., Kulej T., Kumngern M., Kubánek D. Shadow filters based on DDCC. IET Circuits Devices Syst. 2017;11:631–637. doi: 10.1049/iet-cds.2016.0522. DOI
Huaihongthong P., Chaichana A., Suwanjan P., Siripongdee S., Sunthonkanokpong W., Supavarasuwat P., Jaikla W., Khateb F. Single-input multiple-output voltage-mode shadow filter based on VDDDAs. AEU Int. J. Electron. Commun. 2019;103:13–23. doi: 10.1016/j.aeue.2019.02.013. DOI
Buakaew S., Narksarp W., Wongtaychatham C. Shadow bandpass filter with Q-improvement; Proceedings of the 2019 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST); Luang Prabang, Laos. 2–5 July 2019; pp. 1–4. DOI
Buakaew S., Narksarp W., Wongtaychatham C. High quality-factor shadow bandpass filters with orthogonality to the characteristic frequency; Proceedings of the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Infor-mation Technology (ECTI-CON); Phuket, Thailand. 24–27 June 2020; pp. 372–375. DOI
Buakaew S., Wongtaychatham C. Boosting the quality factor of the shadow bandpass filter. J. Circuits Syst. Comput. 2022;31:2250248. doi: 10.1142/S0218126622502486. DOI
Lathi B.P. Modern Digital and Analog Communication Systems. Oxford University Press; New York, NY, USA: 1998.
Dobkin B., Williams J. Analog Circuit Design. Elsevier; Amsterdam, The Netherlands: 2013.
Jaikla W., Adhan S., Suwanjan P., Kumngern M. Current/Voltage Controlled Quadrature Sinusoidal Oscillators for Phase Sensitive Detection Using Commercially Available IC. Sensors. 2020;20:1319. doi: 10.3390/s20051319. PubMed DOI PMC
Horng J.-W. A sinusoidal oscillator using current-controlled current-conveyors. Int. J. Electron. 2001;88:659–664. doi: 10.1080/00207210110044369. DOI
Bhaskar D.R., Senani R., Singh A.K. Linear sinusoidal VCOs: Newconfigurations using current feedback op-amps. Int. J. Electron. 2010;97:263–272. doi: 10.1080/00207210903286173. DOI
Biolek D., Lahiri A., Jaikla W., Siripruchyanun M., Bajer J. Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 2011;42:1116–1123. doi: 10.1016/j.mejo.2011.07.004. DOI
Borah S.S., Singh A., Ghosh M., Ranjan A. Electronically tunable higher-order quadrature oscillator employing CDBA. Microelectron.J. 2021;108:104985. doi: 10.1016/j.mejo.2020.104985. DOI
Herencsar N., Lahiri A., Vrba K., Koton J. An electronically tunable current-mode quadrature oscillator using PCAs. Int. J. Electron. 2012;99:609–621. doi: 10.1080/00207217.2011.643489. DOI
Sotner R., Hrubos Z., Herencsar N., Jerabek J., Dostal T., Vrba K., Sotner R., Hrubos Z., Herencsar N., Jerabek J., et al. Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits, Syst. Signal Process. 2013;33:1–35. doi: 10.1007/s00034-013-9623-2. DOI
Herencsar N., Minaei S., Koton J., Yuce E., Vrba K. New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA. Analog. Integr. Circuits Signal Process. 2012;74:141–154. doi: 10.1007/s10470-012-9936-2. DOI
Abuelma’Atti M.T., Almutairi N. A novel shadow sinusoidal oscillator. Int. J. Electron. Lett. 2016;5:291–302. doi: 10.1080/21681724.2016.1209569. DOI
Buakaew S., Atiwongsangthong N. Adjustable quadrature shadow sinusoidal oscillator; Proceedings of the 2022 8th International Conference on Engineering, Applied Sciences, and Technology (ICEAST); Chiang Mai, Thailand, . 8–10 June 2022; pp. 42–45. DOI
Rubio F.J., Dominguez M.A., Perez-Aloe R., Carrillo J.M. Current-mode electronically-tunable sinusoidal oscillator based on a shadow bandpass filter; Proceedings of the 2022 18th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD); Villasimius, Italy. 12–15 June 2022; pp. 1–4. DOI
Veeravalli A., Sanchez-Sinencio E., Silva-Martinez J. A CMOS Transconductance Amplifier Architecture with Wide Tuning Range for Very Low Frequency Applications. IEEE J. Solid-State Circuits. 2002;37:776–781. doi: 10.1109/JSSC.2002.1004583. DOI
Wang M., Saavedra C.E. Very low frequency tunable signal generator for neural and cardiac cell stimulation. Int. J. Electron. 2011;98:1215–1227. doi: 10.1080/00207217.2011.593137. DOI
Miyazaki T., Lim S.T., Minamitake C., Takeishi T. Ultralow-frequency oscillator with switched capacitors. Electron. Commun. Jpn. 1992;75:98–106. doi: 10.1002/ecjb.4420750410. DOI
Elwakil A.S. Systematic realization of low-frequency oscillators using composite passive–active resistors. IEEE Trans. Instrum. Meas. 1998;47:584–586. doi: 10.1109/19.744209. DOI
Senani R., Bhaskar D. Single Op-Amp Sinusoidal Oscillators Suitable for Generation of Very Low Frequencies. IEEE Trans. Instrum. Meas. 1991;40:777–779. doi: 10.1109/19.85353. DOI
Khateb F., Kulej T., Akbari M., Kumngern M. 0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access. 2021;9:103784–103794. doi: 10.1109/ACCESS.2021.3098183. DOI
Khateb F., Kulej T., Kumngern M., Psychalinos C. Multiple-input bulk-driven MOS transistor for low-voltage low-frequency applications. Circuits Syst. Signal Process. 2018;38:2829–2845. doi: 10.1007/s00034-018-0999-x. DOI
Khateb F., Kulej T., Akbari M., Tang K.-T. A 0.5-V multiple-input bulk-driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2022;30:1739–1747. doi: 10.1109/TVLSI.2022.3203148. DOI
Parvizi M. Design of a new low power MISO multi-mode universal biquad OTA–C filter. Int. J. Electron. 2018;106:440–454. doi: 10.1080/00207217.2018.1540064. DOI
Aggarwal B., Gupta A. QFGMOS and FGMOS based low-voltage high performance MI-OTA. Int. J. Inf. Technol. 2020;13:415–422. doi: 10.1007/s41870-020-00541-6. DOI
Khateb F., Prommee P., Kulej T. MIOTA-based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access. 2022;10:14325–14338. doi: 10.1109/ACCESS.2022.3147665. DOI
Kumngern M., Aupithak N., Khateb F., Kulej T. 0.5V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors. 2020;20:7343. doi: 10.3390/s20247343. PubMed DOI PMC
Prommee P., Karawanich K., Khateb F., Kulej T. Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access. 2021;9:32582–32590. doi: 10.1109/ACCESS.2021.3060939. DOI
Veeravalli A., Sánchez-Sinencio E., Silva-Martínez J. Transconductance amplifier structures with very small transconductances: A comparative design approach. IEEE J. Solid-State Circuits. 2002;37:770–775. doi: 10.1109/JSSC.2002.1004582. DOI
Colletta G.D., Ferreira L.H.C., Pimenta T.C. A 0.25-V 22-nS symmetrical bulk-driven OTA for low frequency Gm-C applications in 130-nm digital CMOS process. Analog. Integr. Circuits Signal Process. 2014;81:377–383. doi: 10.1007/s10470-014-0385-y. DOI
Cotrim E.D., Ferreira L.H.C. An ultra-low-power CMOS symmetrical OTA for low-frequency Gm-C applications. Analog Integr. Circ. Signal Process. 2012;71:275–282.
Wang S.-F., Chen H.-P., Ku Y., Lee C.-L. Versatile Voltage-Mode Biquadratic Filter and Quadrature Oscillator Using Four OTAs and Two Grounded Capacitors. Electronics. 2020;9:1493. doi: 10.3390/electronics9091493. DOI
Wang S.-F., Chen H.-P., Ku Y., Lin Y.-C. Versatile Tunable Voltage-Mode Biquadratic Filter and Its Application in Quadrature Oscillator. Sensors. 2019;19:2349. doi: 10.3390/s19102349. PubMed DOI PMC