Spatiotemporal Variability of Dendroecological Indicators in Pedunculate Oak (Quercus robur L.) Tree-Rings Across Europe in Relation to Species Distribution Models

. 2025 Nov ; 31 (11) : e70567.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41165024

Grantová podpora
PN23090201 Ministerul Cercetării, Inovării şi Digitalizării, FOR-CLIMSOC Programme
Forest Research Institute's Scholarship Fund
22ROMD/2024 Ministerul Cercetării, Inovării și Digitalizării
261509 Own Research Fund
CZ.02.01.01/00/22_008/0004605 Johannes Amos Comenius Programme
FK 134547 National Research, Development, and Innovation Office (NKFIH)
1232738 European Union
SS07010025 Confluence of Moravia and Dyje
Czech Science Foundation
PSG1044 Estonian Research Council
CE0200902 INTERREG Central Europe Programme
European Cooperation in Science and Technology

Climate is a primary, but non-stationary, driver of tree growth. Climate change is altering the sensitivity of forest growth to water availability and temperature over time. It is considered that pedunculate oak (Quercus robur L.) will cope with the changing climatic conditions in Europe in the near future. However, while species distribution models project expansion zones, they also identify reductions in occurrence at the dry and warm distribution margins. Whereas species distribution models primarily rely on occurrence data, tree rings-given their long-term perspective and their use in empirical models-can provide a mechanistic view of forest growth dynamics, including temporally changing climate responses. Increased climate sensitivity and growth synchrony are key dendroecological indicators of tree stress. Here, we used an unprecedented network of 150 Q. robur sites (over 3300 trees), covering the full projected range of contracting to persistent areas across Europe, to assess the dendroecological indicators over recent decades in relation to species distribution model predictions. We reveal that oaks in areas projected to experience range contraction exhibited greater sensitivity to current growing season climatic conditions, whereas those in persistence areas responded more strongly to previous season conditions. Growth synchrony among trees was higher in the contraction areas, but showed no significant increasing trend over the last 70 years, as expected from ecotone theory. Temporal shifts in climate sensitivity were stronger for temperature and vapor pressure deficit in the persistence areas, whereas the climatic water balance gained importance in the contraction zones. These findings suggest that Q. robur growth is not yet being severely affected by climate change, and that the species is currently coping well with the climate changes, even in regions with projected range contractions, thereby challenging statistically derived scenarios of range shift based on species distribution models.

BIOGECO INRAE University of Bordeaux Cestas France

Center for Mountain Economy Vatra Dornei Romania

Centre for Climate Change Research Nicolaus Copernicus University Toruń Poland

Chair of Forest and Land Management and Wood Processing Technologies Estonian University of Life Sciences Tartu Estonia

Chair of Forest Growth and Woody Biomass Production TU Dresden Dresden Germany

Consart Bt Budapest Hungary

CSFK MTA Centre of Excellence Budapest Hungary

Dendrolab IBL Department of Natural Forests Forest Research Institute Białowieża Poland

Dendrolab IBL Department of Silviculture and Genetics Forest Research Institute Sękocin Stary Poland

Department for Forest and Landscape Planning and Monitoring Slovenian Forestry Institute Ljubljana Slovenia

Department of Ecology and Biogeography Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University Toruń Poland

Department of Forest Botany Dendrology and Geobiocoenology Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Department of Forest Management Dendrometry and Economics of Forestry Warsaw University of Life Sciences Warsaw Poland

Department of Geography Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

Department of Geography Johannes Gutenberg University Mainz Germany

Department of Physical Geography and Geoecology Faculty of Science Charles University Prague Czech Republic

Department of Silviculture and Genetics Forest Research Institute Sękocin Stary Poland

Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Faculty of Forestry and Wood Technology Poznań University of Life Sciences Poznań Poland

Faculty of Silviculture and Forest Engineering Transilvania University of Brasov Brasov Romania

Falz Fein Biosphere Reserve Askania Nova Kherson Oblast Ukraine

Forest Biometrics Laboratory Faculty of Forestry Stefan Cel Mare University of Suceava Suceava Romania

Forest Research and Management Institute Chisinau Moldova

Forsite Consultants Ltd Prince Albert Canada

Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic

Independent Researcher Sárkeresztes Hungary

Institute for Botany and Landscape Ecology University of Greifswald Greifswald Germany

Institute for Environmental Sciences University of Geneva Geneva Switzerland

Institute for Evolutionary Ecology of the National Academy of Sciences of Ukraine Kyiv Ukraine

Institute for Geological and Geochemical Research HUN REN Research Centre for Astronomy and Earth Sciences Budapest Hungary

Institute for Soil Sciences HUN REN Centre for Agricultural Research Budapest Hungary

Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria

Institute of Dendrology Polish Academy of Sciences Poznan Poland

Institute of Geography Friedrich Alexander Universität Erlangen Nürnberg Erlangen Germany

Institute of Lowland Forestry and Environment University of Novi Sad Novi Sad Serbia

Kherson State University Ivano Frankivsk Ukraine

Land Surface Atmosphere Interactions TU Munich Freising Germany

Landesforstanstalt Mecklenburg Vorpommern Department of Forest Planning Forest Research Information Systems Research Unit Silviculture and Forest Growth Schwerin Germany

Latvian State Forest Research Institute Silava Salaspils Latvia

M G Kholodny Institute of Botany Kyiv Ukraine

Moldova State University Chisinau Moldova

National Institute for Research and Development in Forestry Marin Drăcea Bucharest Romania

Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences Alnarp Sweden

Zobrazit více v PubMed

Abdi, H. , and Williams L. J.. 2010. “Tukey's Honestly Significant Difference (HSD) Test.” Encyclopedia of Research Design 3: 1–5.

Adams, H. D. , Zeppel M. J. B., Anderegg W. R. L., et al. 2017. “A Multi‐Species Synthesis of Physiological Mechanisms in Drought‐Induced Tree Mortality.” Nature Ecology & Evolution 1: 1285–1291. 10.1038/s41559-017-0248-x. PubMed DOI

Allen, C. D. , Breshears D. D., and McDowell N. G.. 2015. “On Underestimation of Global Vulnerability to Tree Mortality and Forest Die‐Off From Hotter Drought in the Anthropocene.” Ecosphere 6: art129. 10.1890/ES15-00203.1. DOI

Allen, R. G. , Pereira L. S., Raes D., and Smith M.. 1998. Crop Evapotranspiration‐Guidelines for Computing Crop Water Requirements‐FAO Irrigation and Drainage Paper 56. FAO.

Allen, S. T. , Kirchner J. W., Braun S., Siegwolf R. T. W., and Goldsmith G. R.. 2019. “Seasonal Origins of Soil Water Used by Trees.” Hydrology and Earth System Sciences 23: 1199–1210. 10.5194/hess-23-1199-2019. DOI

Árvai, M. , Morgós A., and Kern Z.. 2018. “Growth‐Climate Relations and the Enhancement of Drought Signals in Pedunculate Oak ( DOI

Babst, F. , Bouriaud O., Poulter B., Trouet V., Girardin M. P., and Frank D. C.. 2019. “Twentieth Century Redistribution in Climatic Drivers of Global Tree Growth.” Science Advances 5: eaat4313. 10.1126/sciadv.aat4313. PubMed DOI PMC

Babst, F. , Poulter B., Bodesheim P., Mahecha M. D., and Frank D. C.. 2017. “Improved Tree‐Ring Archives Will Support Earth‐System Science.” Nature Ecology & Evolution 1: 0008. 10.1038/s41559-016-0008. PubMed DOI

Babst, F. , Poulter B., Trouet V., et al. 2013. “Site‐ and Species‐Specific Responses of Forest Growth to Climate Across the European Continent.” Global Ecology and Biogeography 22: 706–717. 10.1111/geb.12023. DOI

Barnett, T. P. , Adam J. C., and Lettenmaier D. P.. 2005. “Potential Impacts of a Warming Climate on Water Availability in Snow‐Dominated Regions.” Nature 438: 303–309. 10.1038/nature04141. PubMed DOI

Basu, S. , Stojanović M., Jevšenak J., et al. 2024. “Pedunculate Oak Is More Resistant to Drought and Extreme Events Than Narrow‐Leaved Ash in Central European Floodplain Forests.” Forest Ecology and Management 561: 121907. 10.1016/j.foreco.2024.121907. DOI

Bates, D. , Maechler M., Bolker B., et al. 2009. Package ‘lme4’. http://lme4r‐forger‐proj.org.

Beguería, S. , Vicente‐Serrano S. M., and Beguería M. S.. 2017. Package ‘Spei.’ Calc. Stand. Precip.‐Evapotranspiration Index CRAN Package.

Benito Garzón, M. , Robson T. M., and Hampe A.. 2019. “ΔTrait SDMs: Species Distribution Models That Account for Local Adaptation and Phenotypic Plasticity.” New Phytologist 222: 1757–1765. 10.1111/nph.15716. PubMed DOI

Booth, T. H. 2017. “Assessing Species Climatic Requirements Beyond the Realized Niche: Some Lessons Mainly From Tree Species Distribution Modelling.” Climatic Change 145: 259–271. 10.1007/s10584-017-2107-9. DOI

Bose, A. K. , Doležal J., Scherrer D., et al. 2024. “Revealing Legacy Effects of Extreme Droughts on Tree Growth of Oaks Across the Northern Hemisphere.” Science of the Total Environment 926: 172049. 10.1016/j.scitotenv.2024.172049. PubMed DOI

Bose, A. K. , Scherrer D., Camarero J. J., et al. 2021. “Climate Sensitivity and Drought Seasonality Determine Post‐Drought Growth Recovery of Quercus Petraea and PubMed DOI

Brun, P. , Zimmermann N. E., Hari C., Pellissier L., and Karger D. N.. 2022. “CHELSA‐BIOCLIM+ A Novel Set of Global Climate‐Related Predictors at Kilometre‐Resolution.” 10.16904/envidat.332. DOI

Bunn, A. G. 2008. “A Dendrochronology Program Library in R (dplR).” Dendrochronologia 26: 115–124. 10.1016/j.dendro.2008.01.002. DOI

Buras, A. , and Menzel A.. 2019. “Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios.” Frontiers in Plant Science 9: 1986. 10.3389/fpls.2018.01986. PubMed DOI PMC

Bussotti, F. , Pollastrini M., Holland V., and Brüggemann W.. 2015. “Functional Traits and Adaptive Capacity of European Forests to Climate Change.” Environmental and Experimental Botany 111: 91–113. 10.1016/j.envexpbot.2014.11.006. DOI

Calvin, K. , Dasgupta D., Krinner G., et al. 2023. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. Intergovernmental Panel on Climate Change (IPCC). 10.59327/IPCC/AR6-9789291691647. DOI

Camarero, J. J. , Gazol A., Sangüesa‐Barreda G., Oliva J., and Vicente‐Serrano S. M.. 2015. “To Die or Not to Die: Early Warnings of Tree Dieback in Response to a Severe Drought.” Journal of Ecology 103: 44–57. 10.1111/1365-2745.12295. DOI

Caudullo, G. , Welk E., and San‐Miguel‐Ayanz J.. 2017. “Chorological Maps for the Main European Woody Species.” Data in Brief 12: 662–666. 10.1016/j.dib.2017.05.007. PubMed DOI PMC

Chakraborty, D. , Móricz N., Rasztovits E., Dobor L., and Schueler S.. 2021. “Provisioning Forest and Conservation Science With High‐Resolution Maps of Potential Distribution of Major European Tree Species Under Climate Change.” Annales Forestales Scientifiques 78: 26. 10.1007/s13595-021-01029-4. DOI

Chen, Y. , Rademacher T., Fonti P., et al. 2022. “Inter‐Annual and Inter‐Species Tree Growth Explained by Phenology of Xylogenesis.” New Phytologist 235: 939–952. PubMed PMC

Cook, B. I. , Mankin J. S., Marvel K., Williams A. P., Smerdon J. E., and Anchukaitis K. J.. 2020. “Twenty‐First Century Drought Projections in the CMIP6 Forcing Scenarios.” Earth's Future 8: e2019EF001461. 10.1029/2019EF001461. DOI

Cook, E. R. 1985. “A Time Series Analysis Approach to Tree Ring Standardization.”

Cook, E. R. , and Kairiukstis L. A.. 1990. Methods of Dendrochronology: Applications in the Environmental Sciences. Springer Science & Business Media.

Cornes, R. C. , Van Der Schrier G., Van Den Besselaar E. J. M., and Jones P. D.. 2018. “An Ensemble Version of the E‐OBS Temperature and Precipitation Data Sets.” Journal of Geophysical Research: Atmospheres 123: 9391–9409. 10.1029/2017JD028200. DOI

Cufar, K. , Grabner M., Morgós A., Martínez Del Castillo E., Merela M., and De Luis M.. 2014. “Common Climatic Signals Affecting Oak Tree‐Ring Growth in SE Central Europe.” Trees 28: 1267–1277. 10.1007/s00468-013-0972-z. DOI

Debel, A. , Meier W. J.‐H., and Bräuning A.. 2021. “Climate Signals for Growth Variations of DOI

Duputié, A. , Rutschmann A., Ronce O., and Chuine I.. 2015. “Phenological Plasticity Will Not Help All Species Adapt to Climate Change.” Global Change Biology 21: 3062–3073. 10.1111/gcb.12914. PubMed DOI

Dyderski, M. K. , Paź S., Frelich L. E., and Jagodziński A. M.. 2018. “How Much Does Climate Change Threaten European Forest Tree Species Distributions?” Global Change Biology 24: 1150–1163. 10.1111/gcb.13925. PubMed DOI

Dyderski, M. K. , Paź‐Dyderska S., Jagodziński A. M., and Puchałka R.. 2025. “Shifts in Native Tree Species Distributions in Europe Under Climate Change.” Journal of Environmental Management 373: 123504. 10.1016/j.jenvman.2024.123504. PubMed DOI

Efron, B. , and Tibshirani R.. 1986. “Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy.” Statistical Science 1: 54–75.

Elith, J. , and Leathwick J. R.. 2009. “Species Distribution Models: Ecological Explanation and Prediction Across Space and Time.” Annual Review of Ecology, Evolution, and Systematics 40: 677–697. 10.1146/annurev.ecolsys.110308.120159. DOI

Ellison, A. M. , Bank M. S., Clinton B. D., et al. 2005. “Loss of Foundation Species: Consequences for the Structure and Dynamics of Forested Ecosystems.” Frontiers in Ecology and the Environment 3: 479–486. 10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2. DOI

Fetting, C. 2020. The European GREEN DEAL. ESDN Office.

Foest, J. J. , Caignard T., Pearse I. S., Bogdziewicz M., and Hacket‐Pain A.. 2025. “Intraspecific Variation in Masting across Climate Gradients is Inconsistent with the Environmental Stress Hypothesis.” Ecology 106, no. 4: e70076. 10.1002/ecy.70076. PubMed DOI PMC

Fréjaville, T. , Fady B., Kremer A., Ducousso A., and Garzón M. B.. 2019. “Inferring Phenotypic Plasticity and Local Adaptation to Climate Across Tree Species Ranges Using Forest Inventory Data.” 10.1101/527390. DOI

Fréjaville, T. , Vizcaíno‐Palomar N., Fady B., Kremer A., and Benito Garzón M.. 2020. “Range Margin Populations Show High Climate Adaptation Lags in European Trees.” Global Change Biology 26: 484–495. 10.1111/gcb.14881. PubMed DOI

Friedrichs, D. A. , Buntgen U., Frank D. C., Esper J., Neuwirth B., and Loffler J.. 2008. “Complex Climate Controls on 20th Century Oak Growth in Central‐West Germany.” Tree Physiology 29: 39–51. 10.1093/treephys/tpn003. PubMed DOI

Friedrichs, D. A. , Trouet V., Büntgen U., et al. 2009. “Species‐Specific Climate Sensitivity of Tree Growth in Central‐West Germany.” Trees 23: 729–739. 10.1007/s00468-009-0315-2. DOI

Gao, S. , Liu R., Zhou T., et al. 2018. “Dynamic Responses of Tree‐Ring Growth to Multiple Dimensions of Drought.” Global Change Biology 24: 5380–5390. PubMed

Gárate‐Escamilla, H. , Hampe A., Vizcaíno‐Palomar N., Robson T. M., and Benito Garzón M.. 2019. “Range‐Wide Variation in Local Adaptation and Phenotypic Plasticity of Fitness‐Related Traits in Fagus Sylvatica and Their Implications Under Climate Change.” Global Ecology and Biogeography 28: 1336–1350. 10.1111/geb.12936. DOI

Gonzalez, I. G. , and Eckstein D.. 2003. “Climatic Signal of Earlywood Vessels of Oak on a Maritime Site.” Tree Physiology 23: 497–504. 10.1093/treephys/23.7.497. PubMed DOI

Gougherty, A. V. , Keller S. R., and Fitzpatrick M. C.. 2021. “Maladaptation, Migration and Extirpation Fuel Climate Change Risk in a Forest Tree Species.” Nature Climate Change 11: 166–171. 10.1038/s41558-020-00968-6. DOI

Gribbe, S. , Enderle L., Weigel R., Hertel D., Leuschner C., and Muffler L.. 2024. “Recent Growth Decline and Shifts in Climatic Growth Constraints Suggest Climate Vulnerability of Beech, Douglas Fir, Pine and Oak in Northern Germany.” Forest Ecology and Management 566: 122022. 10.1016/j.foreco.2024.122022. DOI

Gričar, J. , De Luis M., Hafner P., and Levanič T.. 2013. “Anatomical Characteristics and Hydrologic Signals in Tree‐Rings of Oaks ( DOI

Grossiord, C. , Buckley T. N., Cernusak L. A., et al. 2020. “Plant Responses to Rising Vapor Pressure Deficit.” New Phytologist 226: 1550–1566. 10.1111/nph.16485. PubMed DOI

Guisan, A. , Tingley R., Baumgartner J. B., et al. 2013. “Predicting Species Distributions for Conservation Decisions.” Ecology Letters 16: 1424–1435. 10.1111/ele.12189. PubMed DOI PMC

Hacket‐Pain, A. , Szymkowiak J., Journé V., et al. 2025. “Growth Decline in European Beech Associated With Temperature‐Driven Increase in Reproductive Allocation.” Proceedings of the National Academy of Sciences of the United States of America 122: e2423181122. 10.1073/pnas.2423181122. PubMed DOI PMC

Hanewinkel, M. , Cullmann D. A., Schelhaas M.‐J., Nabuurs G.‐J., and Zimmermann N. E.. 2013. “Climate Change May Cause Severe Loss in the Economic Value of European Forest Land.” Nature Climate Change 3: 203–207. 10.1038/nclimate1687. DOI

Hanley, M. E. , Cook B. I., and Fenner M.. 2019. “Climate Variation, Reproductive Frequency and Acorn Yield in English Oaks.” Journal of Plant Ecology 12: 542–549. 10.1093/jpe/rty046. PubMed DOI PMC

Hargreaves, G. H. , and Samani Z. A.. 1985. “Reference Crop Evapotranspiration From Temperature.” Applied Engineering in Agriculture 1: 96–99.

Harris, I. , Osborn T. J., Jones P., and Lister D.. 2020. “Version 4 of the CRU TS Monthly High‐Resolution Gridded Multivariate Climate Dataset.” Scientific Data 7: 109. 10.1038/s41597-020-0453-3. PubMed DOI PMC

Holmes, R. 1983. “Computer Assisted Quality Control.” Tree‐Ring Bulletin 43: 69–78.

Hu, J. , Moore D. J. P., Burns S. P., and Monson R. K.. 2010. “Longer Growing Seasons Lead to Less Carbon Sequestration by a Subalpine Forest.” Global Change Biology 16: 771–783. 10.1111/j.1365-2486.2009.01967.x. DOI

Huang, M. , Wang X., Keenan T. F., and Piao S.. 2018. “Drought Timing Influences the Legacy of Tree Growth Recovery.” Global Change Biology 24: 3546–3559. 10.1111/gcb.14294. PubMed DOI

Jastrzębowski, S. , and Ukalska J.. 2019. “Dynamics of Epicotyl Emergence of DOI

Jevšenak, J. 2020. “New Features in the dendroTools R Package: Bootstrapped and Partial Correlation Coefficients for Monthly and Daily Climate Data.” Dendrochronologia 63: 125753. 10.1016/j.dendro.2020.125753. DOI

Jevšenak, J. , Buras A., and Babst F.. 2024. “Shifting Potential for High‐Resolution Climate Reconstructions Under Global Warming.” Quaternary Science Reviews 325: 108486. 10.1016/j.quascirev.2023.108486. DOI

Jevšenak, J. , and Levanič T.. 2018. “dendroTools: R Package for Studying Linear and Nonlinear Responses Between Tree‐Rings and Daily Environmental Data.” Dendrochronologia 48: 32–39. 10.1016/j.dendro.2018.01.005. DOI

Jiang, Y. , Marchand W., Rydval M., et al. 2024. “Drought Resistance of Major Tree Species in The Czech Republic.” Agricultural and Forest Meteorology 348: 109933. 10.1016/j.agrformet.2024.109933. DOI

Kasper, J. , Leuschner C., Walentowski H., Petritan A. M., and Weigel R.. 2022. “Winners and Losers of Climate Warming: Declining Growth in Fagus and Tilia vs. Stable Growth in Three Quercus Species in the Natural Beech–Oak Forest Ecotone (Western Romania).” Forest Ecology and Management 506: 119892. 10.1016/j.foreco.2021.119892. DOI

Kern, Z. , Patkó M., Kázmér M., Fekete J., Kele S., and Pályi Z.. 2013. “Multiple Tree‐Ring Proxies (Earlywood Width, Latewood Width and δ13C) From Pedunculate Oak ( DOI

Klesse, S. , Peters R. L., Alfaro‐Sánchez R., et al. 2024. “No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation.” Global Change Biology 30: e17546. 10.1111/gcb.17546. PubMed DOI

Kozlowski, T. T. , and Pallardy S. G.. 1996. Physiology of Woody Plants. Elsevier.

Leifsson, C. , Buras A., Klesse S., et al. 2024. “Identifying Drivers of Non‐Stationary Climate‐Growth Relationships of European Beech.” Science of the Total Environment 937: 173321. 10.1016/j.scitotenv.2024.173321. PubMed DOI

Leifsson, C. , Buras A., Rammig A., and Zang C.. 2023. “Changing Climate Sensitivity of Secondary Growth Following Extreme Drought Events in Forest Ecosystems: A Global Analysis.” Environmental Research Letters 18: 014021. 10.1088/1748-9326/aca9e5. DOI

Lenth, R. 2025. “Emmeans: Estimated Marginal Means, Aka Least‐Squares Means.”

Li, D. , Wu S., Liu L., Zhang Y., and Li S.. 2018. “Vulnerability of the Global Terrestrial Ecosystems to Climate Change.” Global Change Biology 24: 4095–4106. 10.1111/gcb.14327. PubMed DOI

Lüdecke, D. , Ben‐Shachar M. S., Patil I., Waggoner P., and Makowski D.. 2021. “Performance: An R Package for Assessment, Comparison and Testing of Statistical Models.” Journal of Open Source Software 6: 3139.

Madrigal‐González, J. , Ruiz‐Benito P., Ratcliffe S., et al. 2017. “Competition Drives Oak Species Distribution and Functioning in Europe: Implications Under Global Change.” In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L, edited by Gil‐Pelegrín E., Peguero‐Pina J. J., and Sancho‐Knapik D., 513–538. Springer International Publishing. 10.1007/978-3-319-69099-5_15. DOI

Mainali, K. P. , Warren D. L., Dhileepan K., et al. 2015. “Projecting Future Expansion of Invasive Species: Comparing and Improving Methodologies for Species Distribution Modeling.” Global Change Biology 21: 4464–4480. 10.1111/gcb.13038. PubMed DOI

Marchand, W. , Girardin M. P., Hartmann H., et al. 2020. “Strong Overestimation of Water‐Use Efficiency Responses to Rising CO PubMed

Martinez Del Castillo, E. , Torbenson M. C. A., Reinig F., Tejedor E., De Luis M., and Esper J.. 2024. “Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate.” Global Change Biology 30: e17580. 10.1111/gcb.17580. PubMed DOI

Martínez‐Vilalta, J. , and Poyatos R.. 2023. “Connecting the Dots: Concurrent Assessment of Water Flows and Pools to Better Understand Plant Responses to Drought.” Tree Physiology 43: 1285–1289. 10.1093/treephys/tpad076. PubMed DOI

Martín‐Gómez, P. , Rodríguez‐Robles U., Ogée J., et al. 2023. “Contrasting Stem Water Uptake and Storage Dynamics of Water‐Saver and Water‐Spender Species During Drought and Recovery.” Tree Physiology 43: 1290–1306. 10.1093/treephys/tpad032. PubMed DOI

Massey, F. J., Jr. 1951. “The Kolmogorov‐Smirnov Test for Goodness of Fit.” Journal of the American Statistical Association 46: 68–78. 10.1080/01621459.1951.10500769. DOI

Matisons, R. , and Brūmelis G.. 2012. “Influence of Climate on Tree‐Ring and Earlywood Vessel Formation in DOI

Mauri, A. , Girardello M., Strona G., et al. 2022. “EU‐Trees4F, a Dataset on the Future Distribution of European Tree Species.” Scientific Data 9: 37. 10.1038/s41597-022-01128-5. PubMed DOI PMC

McDowell, N. G. , Sapes G., Pivovaroff A., et al. 2022. “Mechanisms of Woody‐Plant Mortality Under Rising Drought, CO DOI

Mellert, K. H. , Fensterer V., Küchenhoff H., et al. 2011. “Hypothesis‐Driven Species Distribution Models for Tree Species in the Bavarian Alps.” Journal of Vegetation Science 22: 635–646. 10.1111/j.1654-1103.2011.01274.x. DOI

Mueller, K. E. , Eisenhauer N., Reich P. B., et al. 2016. “Light, Earthworms, and Soil Resources as Predictors of Diversity of 10 Soil Invertebrate Groups Across Monocultures of 14 Tree Species.” Soil Biology and Biochemistry 92: 184–198. 10.1016/j.soilbio.2015.10.010. DOI

Nechita, C. , Macovei I., Popa I., Badea O. N., Apostol E. N., and Eggertsson Ó.. 2019. “Radial Growth‐Based Assessment of Sites Effects on Pedunculate and Greyish Oak in Southern Romania.” Science of the Total Environment 694: 133709. 10.1016/j.scitotenv.2019.133709. PubMed DOI

Nechita, C. , Popa I., and Eggertsson Ó.. 2017. “Climate Response of Oak ( PubMed DOI

Netsvetov, M. , Prokopuk Y., Ivanko I., Kotovych O., and Romenskyy M.. 2021. “ DOI

Netsvetov, M. , Sergeyev M., Nikulina V., Korniyenko V., and Prokopuk Y.. 2017. “The Climate to Growth Relationships of Pedunculate Oak in Steppe.” Dendrochronologia 44: 31–38. 10.1016/j.dendro.2017.03.004. DOI

O'brien, R. M. 2007. “A Caution Regarding Rules of Thumb for Variance Inflation Factors.” Quality and Quantity 41: 673–690. 10.1007/s11135-006-9018-6. DOI

Peltier, D. M. P. , and Ogle K.. 2020. “Tree Growth Sensitivity to Climate Is Temporally Variable.” Ecology Letters 23: 1561–1572. 10.1111/ele.13575. PubMed DOI

Peters, R. L. , Steppe K., Pappas C., et al. 2023. “Daytime Stomatal Regulation in Mature Temperate Trees Prioritizes Stem Rehydration at Night.” New Phytologist 239: 533–546. 10.1111/nph.18964. PubMed DOI

Peterson, A. T. , Soberón J., Pearson R. G., et al. 2012. Ecological Niches and Geographic Distributions. Princeton University Press. 10.1515/9781400840670. DOI

Phillips, S. J. , Anderson R. P., and Schapire R. E.. 2006. “Maximum Entropy Modeling of Species Geographic Distributions.” Ecological Modelling 190: 231–259. 10.1016/j.ecolmodel.2005.03.026. DOI

Piedallu, C. , Gégout J., Perez V., and Lebourgeois F.. 2013. “Soil Water Balance Performs Better Than Climatic Water Variables in Tree Species Distribution Modelling.” Global Ecology and Biogeography 22: 470–482. 10.1111/geb.12012. DOI

Popa, A. , Jevšenak J., Popa I., Badea O., and Buras A.. 2024. “In Pursuit of Change: Divergent Temporal Shifts in Climate Sensitivity of Norway Spruce Along an Elevational and Continentality Gradient in the Carpathians.” Agricultural and Forest Meteorology 358: 110243. 10.1016/j.agrformet.2024.110243. DOI

Popa, A. , van der Maaten E., Popa I., and Van Der Maaten‐Theunissen M.. 2024. “Early Warning Signals Indicate Climate Change‐Induced Stress in Norway Spruce in the Eastern Carpathians.” Science of the Total Environment 912: 169167. 10.1016/j.scitotenv.2023.169167. PubMed DOI

Puchałka, R. , Koprowski M., Przybylak J., Przybylak R., and Dąbrowski H. P.. 2016. “Did the Late Spring Frost in 2007 and 2011 Affect Tree‐Ring Width and Earlywood Vessel Size in Pedunculate Oak ( PubMed DOI PMC

Puchałka, R. , Paź‐Dyderska S., Jagodziński A. M., et al. 2023. “Predicted Range Shifts of Alien Tree Species in Europe.” Agricultural and Forest Meteorology 341: 109650. 10.1016/j.agrformet.2023.109650. DOI

Rehfeldt, G. E. , Leites L. P., Joyce D. G., and Weiskittel A. R.. 2018. “Role of Population Genetics in Guiding Ecological Responses to Climate.” Global Change Biology 24: 858–868. 10.1111/gcb.13883. PubMed DOI

Reich, P. B. , Oleksyn J., Modrzynski J., et al. 2005. “Linking Litter Calcium, Earthworms and Soil Properties: A Common Garden Test With 14 Tree Species.” Ecology Letters 8: 811–818. 10.1111/j.1461-0248.2005.00779.x. DOI

Roibu, C.‐C. , Sfeclă V., Mursa A., et al. 2020. “The Climatic Response of Tree Ring Width Components of Ash ( DOI

Sack, L. , Ball M. C., Brodersen C., et al. 2016. “Plant Hydraulics as a Central Hub Integrating Plant and Ecosystem Function: Meeting Report for ‘Emerging Frontiers in Plant Hydraulics’ (Washington, DC, May 2015).” Plant, Cell & Environment 39: 2085–2094. 10.1111/pce.12732. PubMed DOI

Sanginés De Cárcer, P. , Vitasse Y., Peñuelas J., Jassey V. E. J., Buttler A., and Signarbieux C.. 2018. “Vapor–Pressure Deficit and Extreme Climatic Variables Limit Tree Growth.” Global Change Biology 24: 1108–1122. 10.1111/gcb.13973. PubMed DOI

Sass‐Klaassen, U. , Sabajo C. R., and Den Ouden J.. 2011. “Vessel Formation in Relation to Leaf Phenology in Pedunculate Oak and European Ash.” Dendrochronologia 29: 171–175. 10.1016/j.dendro.2011.01.002. DOI

Scharnweber, T. , Heinze L., Cruz‐García R., Van Der Maaten‐Theunissen M., and Wilmking M.. 2019. “Confessions of Solitary Oaks: We Grow Fast but we Fear the Drought.” Dendrochronologia 55: 43–49. 10.1016/j.dendro.2019.04.001. DOI

Scharnweber, T. , Smiljanic M., Cruz‐García R., Manthey M., and Wilmking M.. 2020. “Tree Growth at the End of the 21st Century—The Extreme Years 2018/19 as Template for Future Growth Conditions.” Environmental Research Letters 15: 074022. 10.1088/1748-9326/ab865d. DOI

Schützenmeister, A. , Jensen U., and Piepho H.‐P.. 2012. “Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots.” Communications in Statistics: Simulation and Computation 41: 141–154. 10.1080/03610918.2011.582560. DOI

Šenfeldr, M. , Shinneman D. J., McIlroy S. K., Rogers P. C., and DeRose R. J.. 2024. “Variable Climate‐Growth Relationships of Quaking Aspen ( DOI

Sevanto, S. , Mcdowell N. G., Dickman L. T., Pangle R., and Pockman W. T.. 2014. “How Do Trees Die? A Test of the Hydraulic Failure and Carbon Starvation Hypotheses.” Plant, Cell & Environment 37: 153–161. 10.1111/pce.12141. PubMed DOI PMC

Shestakova, T. A. , Aguilera M., Ferrio J. P., Gutierrez E., and Voltas J.. 2014. “Unravelling Spatiotemporal Tree‐Ring Signals in Mediterranean Oaks: A Variance‐Covariance Modelling Approach of Carbon and Oxygen Isotope Ratios.” Tree Physiology 34: 819–838. 10.1093/treephys/tpu037. PubMed DOI

Shestakova, T. A. , Gutiérrez E., Kirdyanov A. V., et al. 2016. “Forests Synchronize Their Growth in Contrasting Eurasian Regions in Response to Climate Warming.” Proceedings of the National Academy of Sciences 113: 662–667. 10.1073/pnas.1514717113. PubMed DOI PMC

Shestakova, T. A. , Gutiérrez E., Valeriano C., Lapshina E., and Voltas J.. 2019. “Recent Loss of Sensitivity to Summer Temperature Constrains Tree Growth Synchrony Among Boreal Eurasian Forests.” Agricultural and Forest Meteorology 268: 318–330. 10.1016/j.agrformet.2019.01.039. DOI

Sochová, I. , Kolář T., Árvai M., et al. 2024. “The Palaeoclimatic Potential of Recent Oak Tree‐Ring Width Chronologies From Southwest Ukraine.” Dendrochronologia 84: 126168. 10.1016/j.dendro.2024.126168. DOI

Sochová, I. , Kolář T., and Rybníček M.. 2021. “A Review of Oak Dendrochronology in Eastern Europe.” Tree‐Ring Research 77: 10–19. 10.3959/TRR2020-2. DOI

Speer, J. H. 2010. Fundamentals of Tree‐Ring Research. University of Arizona Press.

Spinoni, J. , Vogt J. V., Naumann G., Barbosa P., and Dosio A.. 2018. “Will Drought Events Become More Frequent and Severe in Europe?: Future Drought Events in Europe.” International Journal of Climatology 38: 1718–1736. 10.1002/joc.5291. DOI

Stojanović, M. , Basu S., Mikhailov S., et al. 2025. “Distinct Climate Sensitivity and Resilience Mechanisms of Pedunculate Oak ( DOI

Tejedor, E. , Serrano‐Notivoli R., De Luis M., et al. 2020. “A Global Perspective on the Climate‐Driven Growth Synchrony of Neighbouring Trees.” Global Ecology and Biogeography 29: 1114–1125. 10.1111/geb.13090. DOI

Thurm, E. A. , Hernandez L., Baltensweiler A., et al. 2018. “Alternative Tree Species Under Climate Warming in Managed European Forests.” Forest Ecology and Management 430: 485–497. 10.1016/j.foreco.2018.08.028. DOI

Trotsiuk, V. , Babst F., Grossiord C., et al. 2021. “Tree Growth in Switzerland Is Increasingly Constrained by Rising Evaporative Demand.” Journal of Ecology 109: 2981–2990. 10.1111/1365-2745.13712. DOI

Trouet, V. , Panayotov M., Ivanova A., and Frank D.. 2012. “A Pan‐European Summer Teleconnection Mode Recorded by a New Temperature Reconstruction From the Northeastern Mediterranean (ad 1768–2008).” Holocene 22: 887–898. 10.1177/0959683611434225. DOI

Tumajer, J. , Scharnweber T., Smiljanic M., and Wilmking M.. 2022. “Limitation by Vapour Pressure Deficit Shapes Different Intra‐Annual Growth Patterns of Diffuse‐ and Ring‐Porous Temperate Broadleaves.” New Phytologist 233: 2429–2441. PubMed

Valladares, F. , Matesanz S., Guilhaumon F., et al. 2014. “The Effects of Phenotypic Plasticity and Local Adaptation on Forecasts of Species Range Shifts Under Climate Change.” Ecology Letters 17: 1351–1364. 10.1111/ele.12348. PubMed DOI

Voelker, S. L. , Meinzer F. C., Lachenbruch B., Brooks J. R., and Guyette R. P.. 2014. “Drivers of Radial Growth and Carbon Isotope Discrimination of Bur Oak ( PubMed DOI

von Arx, G. , Dobbertin M., and Rebetez M.. 2012. “Spatio‐Temporal Effects of Forest Canopy on Understory Microclimate in a Long‐Term Experiment in Switzerland.” Agricultural and Forest Meteorology 166–167: 144–155. 10.1016/j.agrformet.2012.07.018. DOI

Wessely, J. , Essl F., Fiedler K., et al. 2024. “A Climate‐Induced Tree Species Bottleneck for Forest Management in Europe.” Nature Ecology & Evolution 8: 1109–1117. 10.1038/s41559-024-02406-8. PubMed DOI

Wigley, T. M. , Briffa K. R., and Jones P. D.. 1984. “On the Average Value of Correlated Time Series, With Applications in Dendroclimatology and Hydrometeorology.” Journal of Applied Meteorology and Climatology 23: 201–213. 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2. DOI

Wilmking, M. , Maaten‐Theunissen M., Maaten E., et al. 2020. “Global Assessment of Relationships Between Climate and Tree Growth.” Global Change Biology 26: 3212–3220. 10.1111/gcb.15057. PubMed DOI

Zscheischler, J. , and Seneviratne S. I.. 2017. “Dependence of Drivers Affects Risks Associated With Compound Events.” Science Advances 3: e1700263. 10.1126/sciadv.1700263. PubMed DOI PMC

Zuur, A. 2009. Mixed Effects Models and Extensions in Ecology With R.

Zweifel, R. , Haeni M., Buchmann N., and Eugster W.. 2016. “Are Trees Able to Grow in Periods of Stem Shrinkage?” New Phytologist 211: 839–849. 10.1111/nph.13995. PubMed DOI

Zweifel, R. , Zimmermann L., and Newbery D. M.. 2005. “Modeling Tree Water Deficit From Microclimate: An Approach to Quantifying Drought Stress.” Tree Physiology 25: 147–156. 10.1093/treephys/25.2.147. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...