No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation

. 2024 Oct ; 30 (10) : e17546.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39450699

Grantová podpora
SFL20 P5 SwissForestLab
Sinergia project CALDERA (no. 183571) Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952-2011), the model yielded high regional explanatory power (R2 = 0.38-0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%-18% (interquartile range) in northwestern Central Europe and by 11%-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.

Biological and Environmental Sciences University of Stirling Stirling UK

Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

Center for Mountain Economy Vatra Dornei Romania

Chair of Applied Vegetation Ecology University of Freiburg Freiburg Germany

Chair of Forest Growth and Woody Biomass Production TU Dresden Tharandt Germany

CREAF Bellaterra Catalonia Spain

Departamento de Sistemas y Recursos Naturales Escuela Técnica Superior de Ingeniería de Montes Forestal y del Medio Natural Universidad Politécnica de Madrid Ciudad Universitaria s n Madrid Spain

Department of Agricultural Forest and Food Sciences University of Turin Turin Italy

Department of Earth and Environmental Sciences University of Pavia Pavia Italy

Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania Luigi Vanvitelli Caserta Italy

Department of Environmental Sciences University of Basel Basel Switzerland

Department of Forest Ecology The Silva Tarouca Research Institute Brno Czech Republic

Department of Forestry Faculty of Forestry Sciences Agricultural University of Tirana Tirana Albania

Department of Geography and Planning School of Environmental Sciences University of Liverpool Liverpool UK

Department of Geography and Regional Planning IUCA University of Zaragoza Zaragoza Spain

Department of Geography Johannes Gutenberg University Mainz Germany

Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

Department of Life Science Systems Ecoclimatology Technical University of Munich Freising Germany

Department of Natural Resources and Environmental Science DendroLab University of Nevada Reno Nevada USA

Department of Plant Biology and Ecology University of Sevilla Sevilla Spain

Ecological Botanical Garden University of Bayreuth Bayreuth Germany

Environmental Archaeology and Materials Science National Museum of Denmark Copenhagen Denmark

Faculty of Agricultural Environmental and Food Sciences Free University of Bolzano Bozen Piazza Università Bolzano Italy

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Praha Suchdol Czech Republic

Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Faculty of Forestry at the University of Forestry Sofia Bulgaria

Faculty of Forestry University of Agriculture in Krakow Krakow Poland

Faculty of Forestry University of Belgrade Belgrade Serbia

Faculty of Silviculture and Forest Engineering Transilvania University of Brasov Brasov Romania

Forest Biometrics Laboratory Faculty of Forestry Stefan Cel Mare University of Suceava Suceava Romania

Higher Technical School of Agronomic and Forestry Engineering and Biotechnology University of Castilla La Ancha Albacete Spain

INRAE University of Bordeaux BIOGECO Cestas France

Institute for Ecology and Landscape Weihenstephan Triesdorf University of Applied Sciences Freising Germany

Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria

Institute of Biology University of Hohenheim Stuttgart Germany

Institute of Botany and Landscape Ecology University of Greifswald Greifswald Germany

Instituto Pirenaico de Ecología Zaragoza Spain

Laboratorio DendrOlavide Universidad Pablo de Olavide Sevilla Spain

National Forest Centre Zvolen Slovakia

National Institute for Research and Development in Forestry Marin Dracea Brasov Romania

National Institute for Research and Development in Forestry Marin Dracea Voluntari Romania

Nature Rings Environmental Research and Education Mainz Germany

Northern Forestry Centre Canadian Forest Service Natural Resources Canada Edmonton Alberta Canada

Oeschger Centre for Climate Change Research Bern Switzerland

Plant Ecology and Ecosystems Research University of Goettingen Goettingen Germany

Professorship for Land Surface Atmosphere Interactions Technical University of Munich Munich Germany

Silviculture Group Institute of Terrestrial Ecosystems ETH Zurich Zurich Switzerland

Slovenian Forestry Institute Ljubljana Slovenia

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

Technical University in Zvolen Zvolen Slovakia

Tree Growth and Wood Physiology School of Life Sciences Technical University of Munich Munich Germany

Université de Lorraine AgroParisTech INRAE UMR Silva Nancy France

University of Liège Gembloux Agro Bio Tech Forest Is Life Gembloux Belgium

University of Natural Resources and Life Sciences Vienna BOKU Vienna Austria

Vlaamse Instelling voor Technologisch Onderzoek NV Mol Belgium

Zobrazit více v PubMed

Adler, P. B., E. P. White, and M. H. Cortez. 2020. “Matching the Forecast Horizon With the Relevant Spatial and Temporal Processes and Data Sources.” Ecography 43, no. 11: 1729–1739. https://doi.org/10.1111/ecog.05271.

Alfaro‐Sánchez, R., A. S. Jump, J. Pino, O. Díez‐Nogales, and J. M. Espelta. 2019. “Land Use Legacies Drive Higher Growth, Lower Wood Density and Enhanced Climatic Sensitivity in Recently Established Forests.” Agricultural and Forest Meteorology 276–277: 107630. https://doi.org/10.1016/j.agrformet.2019.107630.

Arend, M., G. Hoch, and A. Kahmen. 2023. “Stem Growth Phenology, Not Canopy Greening Constrains Deciduous Tree Growth.” Tree Physiology 44: tpad160. https://doi.org/10.1093/treephys/tpad160.

Arend, M., R. M. Link, C. Zahnd, G. Hoch, B. Schuldt, and A. Kahmen. 2022. “Lack of Hydraulic Recovery as a Cause of Post‐Drought Foliage Reduction and Canopy Decline in European Beech.” New Phytologist 234, no. 4: 1195–1205. https://doi.org/10.1111/nph.18065.

Babst, F., P. Bodesheim, N. Charney, et al. 2018. “When Tree Rings Go Global: Challenges and Opportunities for Retro‐ and Prospective Insight.” Quaternary Science Reviews 197: 1–20. https://doi.org/10.1016/j.quascirev.2018.07.009.

Babst, F., O. Bouriaud, B. Poulter, V. Trouet, M. P. Girardin, and D. C. Frank. 2019. “Twentieth Century Redistribution in Climatic Drivers of Global Tree Growth.” Science Advances 5, no. 1: eaat4313. https://doi.org/10.1126/sciadv.aat4313.

Babst, F., A. D. Friend, M. Karamihalaki, et al. 2021. “Modeling Ambitions Outpace Observations of Forest Carbon Allocation.” Trends in Plant Science 26, no. 3: 210–219. https://doi.org/10.1016/j.tplants.2020.10.002.

Badeau, V., J.‐L. Dupouey, M. Becker, and J. F. Picard. 1995. “Long‐Term Growth Trends of Fagus sylvatica L. in Northeastern France. A Comparison Between High and Low Density Stands.” Acta Oecologica 16, no. 5: 571–583.

Bastos, A., P. Ciais, P. Friedlingstein, et al. 2020. “Direct and Seasonal Legacy Effects of the 2018 Heat Wave and Drought on European Ecosystem Productivity.” Science Advances 6, no. 24: eaba2724. https://doi.org/10.1126/sciadv.aba2724.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67, no. 1: 1–48. https://doi.org/10.18637/jss.v067.i01.

Beguería, S., and S. M. Vicente‐Serrano. 2023. “SPEI: Calculation of the Standardised Precipitation‐Evapotranspiration Index.” R package version 1.8.1 (Version 1.7) [Computer software]. https://CRAN.R‐project.org/package=SPEI.

Bert, D., F. Lebourgeois, A. Ouayjan, A. Ducousso, J. Ogée, and A. Hampe. 2022. “Past and Future Radial Growth and Water‐Use Efficiency of Fagus Sylvatica and Quercus Robur in a Long‐Term Climate Refugium.” Dendrochronologia 72: 125939. https://doi.org/10.1016/j.dendro.2022.125939.

Bosela, M., L. Kulla, J. Roessiger, et al. 2019. “Long‐Term Effects of Environmental Change and Species Diversity on Tree Radial Growth in a Mixed European Forest.” Forest Ecology and Management 446: 293–303. https://doi.org/10.1016/j.foreco.2019.05.033.

Bosela, M., Á. Rubio‐Cuadrado, P. Marcis, et al. 2023. “Empirical and Process‐Based Models Predict Enhanced Beech Growth in European Mountains Under Climate Change Scenarios: A Multimodel Approach.” Science of the Total Environment 888: 164123. https://doi.org/10.1016/j.scitotenv.2023.164123.

Buras, A., A. Rammig, and C. S. Zang. 2020. “Quantifying Impacts of the 2018 Drought on European Ecosystems in Comparison to 2003.” Biogeosciences 17, no. 6: 1655–1672. https://doi.org/10.5194/bg‐17‐1655‐2020.

Buras, A., C. Schunk, C. Zeiträg, et al. 2018. “Are Scots Pine Forest Edges Particularly Prone to Drought‐Induced Mortality?” Environmental Research Letters 13, no. 2: 025001. https://doi.org/10.1088/1748‐9326/aaa0b4.

Cabon, A., S. A. Kannenberg, A. Arain, et al. 2022. “Cross‐Biome Synthesis of Source Versus Sink Limits to Tree Growth.” Science 376, no. 6594: 758–761. https://doi.org/10.1126/science.abm4875.

Camarero, J. J., M. Colangelo, A. Gazol, and C. Azorín‐Molina. 2021. “Drought and Cold Spells Trigger Dieback of Temperate Oak and Beech Forests in Northern Spain.” Dendrochronologia 66: 125812. https://doi.org/10.1016/j.dendro.2021.125812.

Cavin, L., and A. S. Jump. 2017. “Highest Drought Sensitivity and Lowest Resistance to Growth Suppression Are Found in the Range Core of the Tree Fagus sylvatica L. Not the Equatorial Range Edge.” Global Change Biology 23, no. 1: 362–379. https://doi.org/10.1111/gcb.13366.

Chagnon, C., G. Moreau, L. D'Orangeville, J. Caspersen, J.‐P. Labrecque‐Foy, and A. Achim. 2023. “Strong Latitudinal Gradient in Temperature‐Growth Coupling Near the Treeline of the Canadian Subarctic Forest.” Frontiers in Forests and Global Change 6: 1–12. https://doi.org/10.3389/ffgc.2023.1181653.

Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats. 2014. “Global Warming and 21st Century Drying.” Climate Dynamics 43, no. 9: 2607–2627. https://doi.org/10.1007/s00382‐014‐2075‐y.

Cook, E. R. 1987. “The Decomposition of Tree‐Ring Series for Environmental Studies.” Tree‐Ring Bulletin 47: 37–59.

Cook, E. R., K. R. Briffa, and P. D. Jones. 1994. “Spatial Regression Methods in Dendroclimatology: A Review and Comparison of Two Techniques.” International Journal of Climatology 14, no. 4: 379–402. https://doi.org/10.1002/joc.3370140404.

de Boor, C. 1978. A Practical Guide to Splines. New York, NY, USA: Springer‐Verlag. https://www.springer.com/de/book/9780387953663.

del Río, M., H. Pretzsch, R. Ruíz‐Peinado, et al. 2017. “Species Interactions Increase the Temporal Stability of Community Productivity in Pinus sylvestris–Fagus sylvatica Mixtures Across Europe.” Journal of Ecology 105, no. 4: 1032–1043. https://doi.org/10.1111/1365‐2745.12727.

Di Filippo, A., F. Biondi, K. Čufar, et al. 2007. “Bioclimatology of Beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and Altitudinal Climatic Signals Identified Through a Tree‐Ring Network.” Journal of Biogeography 34, no. 11: 1873–1892. https://doi.org/10.1111/j.1365‐2699.2007.01747.x.

Dittmar, C., W. Zech, and W. Elling. 2003. “Growth Variations of Common Beech (Fagus sylvatica L.) Under Different Climatic and Environmental Conditions in Europe—A Dendroecological Study.” Forest Ecology and Management 173, no. 1–3: 63–78. https://doi.org/10.1016/S0378‐1127(01)00816‐7.

Dorado‐Liñán, I., B. Ayarzagüena, F. Babst, et al. 2022. “Jet Stream Position Explains Regional Anomalies in European Beech Forest Productivity and Tree Growth.” Nature Communications 13: 1. https://doi.org/10.1038/s41467‐022‐29615‐8.

Droogers, P., and R. G. Allen. 2002. “Estimating Reference Evapotranspiration Under Inaccurate Data Conditions.” Irrigation and Drainage Systems 16, no. 1: 33–45. https://doi.org/10.1023/A:1015508322413.

Dulamsuren, C., M. Hauck, G. Kopp, M. Ruff, and C. Leuschner. 2017. “European Beech Responds to Climate Change With Growth Decline at Lower, and Growth Increase at Higher Elevations in the Center of Its Distribution Range (SW Germany).” Trees 31, no. 2: 673–686. https://doi.org/10.1007/s00468‐016‐1499‐x.

Etzold, S., F. Sterck, A. K. Bose, et al. 2022. “Number of Growth Days and Not Length of the Growth Period Determines Radial Stem Growth of Temperate Trees.” Ecology Letters 25, no. 2: 427–439. https://doi.org/10.1111/ele.13933.

Evans, M. E. K., R. J. DeRose, S. Klesse, et al. 2022. “Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO2.” Bioscience 72, no. 3: 233–246. https://doi.org/10.1093/biosci/biab119.

Farahat, E., and H. W. Linderholm. 2018. “Growth–Climate Relationship of European Beech at Its Northern Distribution Limit.” European Journal of Forest Research 137, no. 5: 619–629. https://doi.org/10.1007/s10342‐018‐1129‐9.

Fatichi, S., S. Leuzinger, and C. Körner. 2014. “Moving Beyond Photosynthesis: From Carbon Source to Sink‐Driven Vegetation Modeling.” New Phytologist 201, no. 4: 1086–1095. https://doi.org/10.1111/nph.12614.

Fischer, G., F. Nachtergaele, S. Prieler, H. T. van Velthuizen, L. Verelst, and D. Wiberg. 2008. Global Agro‐Ecological Zones Assessment for Agriculture [Dataset]. Laxenburg, Austria: IIASA. FAO: Rome, Italy. https://www.fao.org/soils‐portal/data‐hub/soil‐maps‐and‐databases/harmonized‐world‐soil‐database‐v12/en/.

Frei, E. R., M. M. Gossner, Y. Vitasse, et al. 2022. “European Beech Dieback After Premature Leaf Senescence During the 2018 Drought in Northern Switzerland.” Plant Biology 24, no. 7: 1132–1145. https://doi.org/10.1111/plb.13467.

Fritts, H. C., D. G. Smith, J. W. Cardis, and C. A. Budelsky. 1965. “Tree‐Ring Characteristics Along a Vegetation Gradient in Northern Arizona.” Ecology 46, no. 4: 393–401. https://doi.org/10.2307/1934872.

Gillerot, L., D. I. Forrester, A. Bottero, A. Rigling, and M. Lévesque. 2021. “Tree Neighbourhood Diversity Has Negligible Effects on Drought Resilience of European Beech, Silver Fir and Norway Spruce.” Ecosystems 24, no. 1: 20–36. https://doi.org/10.1007/s10021‐020‐00501‐y.

Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez. 2009. “Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling.” Journal of Hydrology 377, no. 1: 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.

Hacket‐Pain, A. J., D. Ascoli, G. Vacchiano, et al. 2018. “Climatically Controlled Reproduction Drives Interannual Growth Variability in a Temperate Tree Species.” Ecology Letters 21, no. 12: 1833–1844. https://doi.org/10.1111/ele.13158.

Hacket‐Pain, A. J., L. Cavin, A. D. Friend, and A. S. Jump. 2016. “Consistent Limitation of Growth by High Temperature and Low Precipitation From Range Core to Southern Edge of European Beech Indicates Widespread Vulnerability to Changing Climate.” European Journal of Forest Research 135, no. 5: 897–909. https://doi.org/10.1007/s10342‐016‐0982‐7.

Hargreaves, G. 1994. “Defining and Using Reference Evapotranspiration.” Journal of Irrigation and Drainage Engineering 120, no. 6: 1132–1139. https://doi.org/10.1061/(ASCE)0733‐9437(1994)120:6(1132).

Harvey, J. E., M. Smiljanić, T. Scharnweber, et al. 2020. “Tree Growth Influenced by Warming Winter Climate and Summer Moisture Availability in Northern Temperate Forests.” Global Change Biology 26, no. 4: 2505–2518. https://doi.org/10.1111/gcb.14966.

Henttonen, H. M., H. Mäkinen, J. Heiskanen, M. Peltoniemi, A. Laurén, and M. Hordo. 2014. “Response of Radial Increment Variation of Scots Pine to Temperature, Precipitation and Soil Water Content Along a Latitudinal Gradient Across Finland and Estonia.” Agricultural and Forest Meteorology 198–199: 294–308. https://doi.org/10.1016/j.agrformet.2014.09.004.

Hiederer, R. 2013. Mapping Soil Properties for Europe – Spatial Representation of Soil Database Attributes. Luxemberg EUR26082EN Scientific and Technical Research Series, 47: Publications Office of the European Union. https://doi.org/10.2788/87286.

Huang, J., J. C. Tardif, Y. Bergeron, B. Denneler, F. Berninger, and M. P. Girardin. 2010. “Radial Growth Response of Four Dominant Boreal Tree Species to Climate Along a Latitudinal Gradient in the Eastern Canadian Boreal Forest.” Global Change Biology 16, no. 2: 711–731. https://doi.org/10.1111/j.1365‐2486.2009.01990.x.

IPCC. 2021. “Climate Change 2021: The Physical Science Basis.” In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by V. Masson‐Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou. Cambridge, United Kingdom: Cambridge University Press.

Ježík, M., M. Blaženec, P. Mezei, et al. 2021. “Influence of Weather and Day Length on Intra‐Seasonal Growth of Norway Spruce (Picea abies) and European Beech (Fagus sylvatica) in a Natural Montane Forest.” Canadian Journal of Forest Research 51, no. 12: 1799–1810. https://doi.org/10.1139/cjfr‐2020‐0067.

Kannenberg, S. A., W. R. L. Anderegg, M. L. Barnes, M. P. Dannenberg, and A. K. Knapp. 2024. “Dominant Role of Soil Moisture in Mediating Carbon and Water Fluxes in Dryland Ecosystems.” Nature Geoscience 17: 38–43. https://doi.org/10.1038/s41561‐023‐01351‐8.

Karger, D. N., O. Conrad, J. Böhner, et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4, no. 1: 170122. https://doi.org/10.1038/sdata.2017.122.

Karger, D. N., and N. E. Zimmermann. 2018. “CHELSAcruts – High Resolution Temperature and Precipitation Timeseries for the 20th Century and Beyond.” EnviDat. https://doi.org/10.16904/envidat.159.

Kašpar, J., P. Šamonil, I. Vašíčková, D. Adam, and P. Daněk. 2020. “Woody Species‐Specific Disturbance Regimes and Strategies in Mixed Mountain Temperate Forests in the Šumava Mts., Czech Republic.” European Journal of Forest Research 139, no. 1: 97–109. https://doi.org/10.1007/s10342‐019‐01252‐9.

Kašpar, J., J. Tumajer, P. Šamonil, and I. Vašíčková. 2021. “Species‐Specific Climate–Growth Interactions Determine Tree Species Dynamics in Mixed Central European Mountain Forests.” Environmental Research Letters 16, no. 3: 34039. https://doi.org/10.1088/1748‐9326/abd8fb.

Klesse, S., F. Babst, S. Lienert, et al. 2018. “A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability.” Global Biogeochemical Cycles 32, no. 8: 1226–1240. https://doi.org/10.1029/2017GB005856.

Klesse, S., R. J. DeRose, F. Babst, et al. 2020. “Continental‐Scale Tree‐Ring‐Based Projection of Douglas‐Fir Growth: Testing the Limits of Space‐For‐Time Substitution.” Global Change Biology 26, no. 9: 5146–5163. https://doi.org/10.1111/gcb.15170.

Klesse, S., R. J. DeRose, C. H. Guiterman, et al. 2018. “Sampling Bias Overestimates Climate Change Impacts on Forest Growth in the Southwestern United States.” Nature Communications 9, no. 1: 5336. https://doi.org/10.1038/s41467‐018‐07800‐y.

Klesse, S., T. Wohlgemuth, K. Meusburger, et al. 2022. “Long‐Term Soil Water Limitation and Previous Tree Vigor Drive Local Variability of Drought‐Induced Crown Dieback in Fagus sylvatica.” Science of the Total Environment 851: 157926. https://doi.org/10.1016/j.scitotenv.2022.157926.

Klopčič, M., A. Rozman, and A. Bončina. 2022. “Evidence of a Climate‐Change‐Induced Shift in European Beech Distribution: An Unequal Response in the Elevation, Temperature and Precipitation Gradients.” Forests 13, no. 8: 1311. https://doi.org/10.3390/f13081311.

Knutzen, F., C. Dulamsuren, I. C. Meier, and C. Leuschner. 2017. “Recent Climate Warming‐Related Growth Decline Impairs European Beech in the Center of its Distribution Range.” Ecosystems 20, no. 8: 1494–1511. https://doi.org/10.1007/s10021‐017‐0128‐x.

Leuschner, C. 2020. “Drought Response of European Beech (Fagus sylvatica L.) – A Review.” Perspectives in Plant Ecology, Evolution and Systematics 47: 125576. https://doi.org/10.1016/j.ppees.2020.125576.

Leuschner, C., and H. Ellenberg. 2017. “Beech and Mixed Beech Forests.” In Ecology of Central European Forests: Vegetation Ecology of Central Europe, edited by C. Leuschner and H. Ellenberg, 351–441. Cham, Switzerland: Springer. https://doi.org/10.1007/978‐3‐319‐43042‐3_5.

Leuschner, C., G. Weithmann, B. Bat‐Enerel, and R. Weigel. 2023. “The Future of European Beech in Northern Germany—Climate Change Vulnerability and Adaptation Potential.” Forests 14: 1448. https://doi.org/10.3390/f14071448.

Lévesque, M., L. Walthert, and P. Weber. 2016. “Soil Nutrients Influence Growth Response of Temperate Tree Species to Drought.” Journal of Ecology 104, no. 2: 377–387. https://doi.org/10.1111/1365‐2745.12519.

Martinez del Castillo, E., L. A. Longares, J. Gričar, et al. 2016. “Living on the Edge: Contrasted Wood‐Formation Dynamics in Fagus sylvatica and Pinus sylvestris Under Mediterranean Conditions.” Frontiers in Plant Science 7: 370. https://doi.org/10.3389/fpls.2016.00370.

Martinez del Castillo, E., C. S. Zang, A. Buras, et al. 2022. “Climate‐Change‐Driven Growth Decline of European Beech Forests.” Communications Biology 5: 163. https://doi.org/10.1038/s42003‐022‐03107‐3.

Martínez‐Sancho, E., L. Slámová, S. Morganti, et al. 2020. “The GenTree Dendroecological Collection, Tree‐Ring and Wood Density Data From Seven Tree Species Across Europe.” Scientific Data 7, no. 1: 1–7. https://doi.org/10.1038/s41597‐019‐0340‐y.

Mauri, A., G. Strona, and J. San‐Miguel‐Ayanz. 2017. “EU‐Forest, A High‐Resolution Tree Occurrence Dataset for Europe.” Scientific Data 4: 160123. https://doi.org/10.1038/sdata.2016.123.

Michelot, A., S. Simard, C. Rathgeber, E. Dufrêne, and C. Damesin. 2012. “Comparing the Intra‐Annual Wood Formation of Three European Species (Fagus sylvatica, Quercus Petraea and Pinus sylvestris) as Related to Leaf Phenology and Non‐structural Carbohydrate Dynamics.” Tree Physiology 32, no. 8: 1033–1045. https://doi.org/10.1093/treephys/tps052.

Muffler, L., J. Schmeddes, R. Weigel, et al. 2021. “High Plasticity in Germination and Establishment Success in the Dominant Forest Tree Fagus sylvatica Across Europe.” Global Ecology and Biogeography 30, no. 8: 1583–1596. https://doi.org/10.1111/geb.13320.

Muffler, L., R. Weigel, A. J. Hacket‐Pain, et al. 2020. “Lowest Drought Sensitivity and Decreasing Growth Synchrony Towards the Dry Distribution Margin of European Beech.” Journal of Biogeography 47, no. 9: 1910–1921. https://doi.org/10.1111/jbi.13884.

Neycken, A., M. Scheggia, C. Bigler, and M. Lévesque. 2022. “Long‐Term Growth Decline Precedes Sudden Crown Dieback of European Beech.” Agricultural and Forest Meteorology 324: 109103. https://doi.org/10.1016/j.agrformet.2022.109103.

Noce, S., L. Caporaso, and M. Santini. 2020. “A New Global Dataset of Bioclimatic Indicators.” Scientific Data 7, no. 1: 398. https://doi.org/10.1038/s41597‐020‐00726‐5.

Nussbaumer, A., A. Gessler, S. Benham, et al. 2021. “Contrasting Resource Dynamics in Mast Years for European Beech and Oak—A Continental Scale Analysis.” Frontiers in Forests and Global Change 4: 1–17. https://doi.org/10.3389/ffgc.2021.689836.

Pan, Y., R. A. Birdsey, J. Fang, et al. 2011. “A Large and Persistent Carbon Sink in the World's Forests.” Science 333, no. 6045: 988–993. https://doi.org/10.1126/science.1201609.

Papastefanou, P., C. S. Zang, T. A. M. Pugh, and A. Rammig. 2020. “A Dynamic Model for Strategies and Dynamics of Plant Water‐Potential Regulation Under Drought Conditions.” Frontiers in Plant Science 11: 373. https://doi.org/10.3389/fpls.2020.00373.

Peltier, D. M. P., J. J. Barber, and K. Ogle. 2018. “Quantifying Antecedent Climatic Drivers of Tree Growth in the Southwestern US.” Journal of Ecology 106, no. 2: 613–624. https://doi.org/10.1111/1365‐2745.12878.

Perret, D. L., M. E. K. Evans, and D. F. Sax. 2024. “A species' Response to Spatial Climatic Variation Does Not Predict Its Response to Climate Change.” Proceedings of the National Academy of Sciences 121, no. 1: e2304404120. https://doi.org/10.1073/pnas.2304404120.

Peters, R. 2013. Beech Forests. The Netherlands: Springer Science & Business Media.

Peters, R. L., K. Steppe, H. E. Cuny, et al. 2021. “Turgor – A Limiting Factor for Radial Growth in Mature Conifers Along an Elevational Gradient.” New Phytologist 229, no. 1: 213–229. https://doi.org/10.1111/nph.16872.

R Core Team. 2023. “R: A Language and Environment for Statistical Computing [Computer Software].” R Foundation for Statistical Computing. https://www.R‐project.org/.

Ringgaard, I. M., S. Yang, E. Kaas, and J. H. Christensen. 2020. “Barents‐Kara Sea Ice and European Winters in EC‐Earth.” Climate Dynamics 54, no. 7: 3323–3338. https://doi.org/10.1007/s00382‐020‐05174‐w.

Rozas, V., J. J. Camarero, G. Sangüesa‐Barreda, M. Souto, and I. García‐González. 2015. “Summer Drought and ENSO‐Related Cloudiness Distinctly Drive Fagus sylvatica Growth Near the Species Rear‐Edge in Northern Spain.” Agricultural and Forest Meteorology 201: 153–164. https://doi.org/10.1016/j.agrformet.2014.11.012.

Salomón, R. L., R. L. Peters, R. Zweifel, et al. 2022. “The 2018 European Heatwave Led to Stem Dehydration but Not to Consistent Growth Reductions in Forests.” Nature Communications 13: 28. https://doi.org/10.1038/s41467‐021‐27579‐9.

Šamonil, P., P. Doleželová, I. Vašíčková, et al. 2013. “Individual‐Based Approach to the Detection of Disturbance History Through Spatial Scales in a Natural Beech‐Dominated Forest.” Journal of Vegetation Science 24, no. 6: 1167–1184. https://doi.org/10.1111/jvs.12025.

Scharnweber, T., M. Smiljanic, R. Cruz‐García, M. Manthey, and M. Wilmking. 2020. “Tree Growth at the End of the 21st Century—The Extreme Years 2018/19 as Template for Future Growth Conditions.” Environmental Research Letters 15, no. 7: 074022. https://doi.org/10.1088/1748‐9326/ab865d.

Schmied, G., H. Pretzsch, D. Ambs, et al. 2023. “Rapid Beech Decline Under Recurrent Drought Stress: Individual Neighborhood Structure and Soil Properties Matter.” Forest Ecology and Management 545: 121305. https://doi.org/10.1016/j.foreco.2023.121305.

Schuldt, B., A. Buras, M. Arend, et al. 2020. “A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests.” Basic and Applied Ecology 45: 86–103. https://doi.org/10.1016/j.baae.2020.04.003.

Serra‐Maluquer, X., A. Gazol, G. Sangüesa‐Barreda, et al. 2019. “Geographically Structured Growth Decline of Rear‐Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate.” Ecosystems 22, no. 6: 1325–1337. https://doi.org/10.1007/s10021‐019‐00339‐z.

Silva, D. E., P. Rezende Mazzella, M. Legay, E. Corcket, and J. L. Dupouey. 2012. “Does Natural Regeneration Determine the Limit of European Beech Distribution Under Climatic Stress?” Forest Ecology and Management 266: 263–272. https://doi.org/10.1016/j.foreco.2011.11.031.

Spinoni, J., J. V. Vogt, G. Naumann, P. Barbosa, and A. Dosio. 2018. “Will Drought Events Become More Frequent and Severe in Europe?” International Journal of Climatology 38, no. 4: 1718–1736. https://doi.org/10.1002/joc.5291.

Stojnić, S., M. Suchocka, M. Benito‐Garzón, et al. 2018. “Variation in Xylem Vulnerability to Embolism in European Beech From Geographically Marginal Populations.” Tree Physiology 38, no. 2: 173–185. https://doi.org/10.1093/treephys/tpx128.

Tallieu, C., V. Badeau, D. Allard, L.‐M. Nageleisen, and N. Bréda. 2020. “Year‐To‐Year Crown Condition Poorly Contributes to Ring Width Variations of Beech Trees in French ICP Level I Network.” Forest Ecology and Management 465: 118071. https://doi.org/10.1016/j.foreco.2020.118071.

van der Maaten, E., J. Pape, M. van der Maaten‐Theunissen, et al. 2018. “Distinct Growth Phenology but Similar Daily Stem Dynamics in Three Co‐Occurring Broadleaved Tree Species.” Tree Physiology 38, no. 12: 1820–1828. https://doi.org/10.1093/treephys/tpy042.

van der Maaten, E., M. van der Maaten‐Theunissen, and H. Spiecker. 2012. “Temporally Resolved Intra‐Annual Wood Density Variations in European Beech (Fagus sylvatica L.) as Affected by Climate and Aspect.” Annals of Forest Research 55, no. 1: 113–124. https://doi.org/10.15287/afr.2012.83.

van der Woude, A. M., W. Peters, E. Joetzjer, et al. 2023. “Temperature Extremes of 2022 Reduced Carbon Uptake by Forests in Europe.” Nature Communications 14: 1–11. https://doi.org/10.1038/s41467‐023‐41851‐0.

Vannoppen, A., V. Kint, Q. Ponette, K. Verheyen, and B. Muys. 2019. “Tree Species Diversity Impacts Average Radial Growth of Beech and Oak Trees in Belgium, Not Their Long‐Term Growth Trend.” Forest Ecosystems 6, no. 1: 10. https://doi.org/10.1186/s40663‐019‐0169‐z.

Vašíčková, I., P. Šamonil, K. Král, A. E. Fuentes Ubilla, P. Daněk, and D. Adam. 2019. “Driving Factors of the Growth Response of Fagus sylvatica L. to Disturbances: A Comprehensive Study From Central‐European Old‐Growth Forests.” Forest Ecology and Management 444: 96–106. https://doi.org/10.1016/j.foreco.2019.04.018.

Vilà‐Cabrera, A., and A. S. Jump. 2019. “Greater Growth Stability of Trees in Marginal Habitats Suggests a Patchy Pattern of Population Loss and Retention in Response to Increased Drought at the Rear Edge.” Ecology Letters 22, no. 9: 1439–1448. https://doi.org/10.1111/ele.13329.

Vitasse, Y., A. Bottero, M. Cailleret, et al. 2019. “Contrasting Resistance and Resilience to Extreme Drought and Late Spring Frost in Five Major European Tree Species.” Global Change Biology 25, no. 11: 3781–3792. https://doi.org/10.1111/gcb.14803.

Wang‐Erlandsson, L., W. G. M. Bastiaanssen, H. Gao, et al. 2016. “Global Root Zone Storage Capacity From Satellite‐Based Evaporation.” Hydrology and Earth System Sciences 20, no. 4: 1459–1481. https://doi.org/10.5194/hess‐20‐1459‐2016.

Wehrens, P., and L. M. C. Buydens. 2007. “Self‐ and Super‐Organizing Maps in R: The Kohonen Package.” Journal of Statistical Software 21, no. 5: 1–19. https://doi.org/10.18637/jss.v021.i05.

Weigel, R., B. Bat‐Enerel, C. Dulamsuren, L. Muffler, G. Weithmann, and C. Leuschner. 2023. “Summer Drought Exposure, Stand Structure, and Soil Properties Jointly Control the Growth of European Beech Along a Steep Precipitation Gradient in Northern Germany.” Global Change Biology 29, no. 3: 763–779. https://doi.org/10.1111/gcb.16506.

Weigel, R., L. Muffler, M. Klisz, et al. 2018. “Winter Matters: Sensitivity to Winter Climate and Cold Events Increases Towards the Cold Distribution Margin of European Beech (Fagus sylvatica L.).” Journal of Biogeography 45, no. 12: 2779–2790. https://doi.org/10.1111/jbi.13444.

Xu, X., D. Medvigy, J. S. Powers, J. M. Becknell, and K. Guan. 2016. “Diversity in Plant Hydraulic Traits Explains Seasonal and Inter‐Annual Variations of Vegetation Dynamics in Seasonally Dry Tropical Forests.” New Phytologist 212, no. 1: 80–95. https://doi.org/10.1111/nph.14009.

Yue, C., H.‐P. Kahle, J. Klädtke, and U. Kohnle. 2023. “Forest Stand‐By‐Environment Interaction Invalidates the Use of Space‐For‐Time Substitution for Site Index Modeling Under Climate Change.” Forest Ecology and Management 527: 120621. https://doi.org/10.1016/j.foreco.2022.120621.

Zhao, S., N. Pederson, L. D'Orangeville, et al. 2019. “The International Tree‐Ring Data Bank (ITRDB) Revisited: Data Availability and Global Ecological Representativity.” Journal of Biogeography 46, no. 2: 355–368. https://doi.org/10.1111/jbi.13488.

Zweifel, R., F. Sterck, S. Braun, et al. 2021. “Why Trees Grow at Night.” New Phytologist 231, no. 6: 2174–2185. https://doi.org/10.1111/nph.17552.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...