Contrasting Future Growth of Norway Spruce and Scots Pine Forests Under Warming Climate

. 2024 Nov ; 30 (11) : e17580.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39548695

Grantová podpora
AdG 882727 H2020 European Research Council
539441548 Deutsche Forschungsgemeinschaft

Forests are essential to climate change mitigation through carbon sequestration, transpiration, and turnover. However, the quantification of climate change impacts on forest growth is uncertain and even contradictory in some regions, which is the result of spatially constrained studies. Here, we use an unprecedented network of 1.5 million tree growth records from 493 Picea abies and Pinus sylvestris stands across Europe to predict species-specific tree growth variability from 1950 to 2016 (R2 > 0.82) and develop 21st-century gridded projections considering different climate change scenarios. The approach demonstrates overall positive effects of warming temperatures leading to 25% projected conifer growth increases under the SPP370 scenario, but these additional carbon gains are spatially inhomogeneous and associated with geographic climate gradients. Maximum gains are projected for pines in Scandinavia, where growth trajectories indicate 50% increases by 2071-2100. Smaller but significant growth reductions are projected in Mediterranean Europe, where conifer growth shrinks by 25% in response to warmer temperatures. Our results reveal potential mitigating effects via forest carbon sequestration increases in response to global warming and stress the importance of effective forest management.

Erratum v

PubMed

Zobrazit více v PubMed

Allen, C. D., D. D. Breshears, and N. G. McDowell. 2015. “On Underestimation of Global Vulnerability to Tree Mortality and Forest Die‐Off From Hotter Drought in the Anthropocene.” Ecosphere 6: 1–55. https://doi.org/10.1890/ES15‐00203.1.

Ammer, C. 2019. “Diversity and Forest Productivity in a Changing Climate.” New Phytologist 221: 50–66. https://doi.org/10.1111/nph.15263.

Anderegg, W. R. L., A. T. Trugman, G. Badgley, A. G. Konings, and J. Shaw. 2020. “Divergent Forest Sensitivity to Repeated Extreme Droughts.” Nature Climate Change 10: 1091–1095. https://doi.org/10.1038/s41558‐020‐00919‐1.

Arora, V. K., A. Katavouta, R. G. Williams, et al. 2020. “Carbon‐Concentration and Carbon‐Climate Feedbacks in CMIP6 Models and Their Comparison to CMIP5 Models.” Biogeosciences 17: 4173–4222. https://doi.org/10.5194/bg‐17‐4173‐2020.

Assefa, S., M. Ventura, F. Bravo, et al. 2024. “Pure and Mixed Scots Pine Forests Showed Divergent Responses to Climate Variation and Increased Intrinsic Water Use Efficiency Across a European ‐ Wide Climate Gradient.” European Journal of Forest Research. https://doi.org/10.1007/s10342‐024‐01731‐8.

Babst, F., M. R. Alexander, P. Szejner, et al. 2014. “A Tree‐Ring Perspective on the Terrestrial Carbon Cycle.” Oecologia 176: 307–322. https://doi.org/10.1007/s00442‐014‐3031‐6.

Babst, F., P. Bodesheim, N. Charney, et al. 2018. “When Tree Rings Go Global: Challenges and Opportunities for Retro‐ and Prospective Insight.” Quaternary Science Reviews 197: 1–20. https://doi.org/10.1016/j.quascirev.2018.07.009.

Babst, F., O. Bouriaud, B. Poulter, V. Trouet, M. P. Girardin, and D. C. Frank. 2019. “Twentieth Century Redistribution in Climatic Drivers of Global Tree Growth.” Science Advances 5: eaat4313. https://doi.org/10.1126/sciadv.aat4313.

Babst, F., A. D. Friend, M. Karamihalaki, et al. 2021. “Modeling Ambitions Outpace Observations of Forest Carbon Allocation.” Trends in Plant Science 26: 210–219. https://doi.org/10.1016/j.tplants.2020.10.002.

Bartoń, K. 2023. “MuMIn: Multimodal Inference.” R Packag. ver. 1.47.5.

Bastien‐Olvera, B. A., M. N. Conte, X. Dong, et al. 2023. “Unequal Climate Impacts on Global Values of Natural Capital.” Nature 625: 722–727. https://doi.org/10.1038/s41586‐023‐06769‐z.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2014. “lme4: Linear Mixed‐Effects Models Using Eigen and S4.” Journal of Statistical Software 67: 1–48.

Bauwe, A., G. Jurasinski, T. Scharnweber, C. Schröder, and B. Lennartz. 2016. “Impact of Climate Change on Tree‐Ring Growth of Scots Pine, Common Beech and Pedunculate Oak in Northeastern Germany.” iForest 9: 1–11. https://doi.org/10.3832/ifor1421‐008.

Becker, R. A., and R. A. Wilks. 1993. “Maps in S.” AT&T Bell Laboratories Statistics Research Report [93.2].

Biondi, F., and F. Qeadan. 2008. “A Theory‐Driven Approach to Tree‐Ring Standardization: Defining the Biological Trend From Expected Basal Area Increment.” Tree‐Ring Research 64: 81–96. https://doi.org/10.3959/2008‐6.1.

Bodesheim, P., F. Babst, D. C. Frank, et al. 2022. “Predicting Spatiotemporal Variability in Radial Tree Growth at the Continental Scale With Machine Learning.” Environmental Data Science 1: 1–35. https://doi.org/10.1017/eds.2022.8.

Bose, A. K., A. Gessler, A. Bolte, et al. 2020. “Growth and Resilience Responses of Scots Pine to Extreme Droughts Across Europe Depend on Predrought Growth Conditions.” Global Change Biology 26: 4521–4537. https://doi.org/10.1111/gcb.15153.

Bosela, M., Á. Rubio‐Cuadrado, P. Marcis, et al. 2023. “Empirical and Process‐Based Models Predict Enhanced Beech Growth in European Mountains Under Climate Change Scenarios: A Multimodel Approach.” Science of the Total Environment 888: 164123. https://doi.org/10.1016/j.scitotenv.2023.164123.

Bottero, A., D. I. Forrester, M. Cailleret, et al. 2021. “Growth Resistance and Resilience of Mixed Silver Fir and Norway Spruce Forests in Central Europe: Contrasting Responses to Mild and Severe Droughts.” Global Change Biology 27: 4403–4419. https://doi.org/10.1111/gcb.15737.

Bunn, A. G. 2008. “A Dendrochronology Program Library in R (dplR).” Dendrochronologia 26: 115–124. https://doi.org/10.1016/j.dendro.2008.01.002.

Buontempo, C., S. N. Burgess, D. Dee, et al. 2022. “The Copernicus Climate Change Service Climate Science in Action.” Bulletin of the American Meteorological Society 103: E2669–E2687. https://doi.org/10.1175/BAMS‐D‐21‐0315.1.

Buras, A., and A. Menzel. 2019. “Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios.” Frontiers in Plant Science 9: 1–13. https://doi.org/10.3389/fpls.2018.01986.

Camarero, J. J., A. Gazol, G. Sangüesa‐Barreda, J. Oliva, and S. M. Vicente‐serrano. 2015. “To Die or Not to Die: Early Warnings of Tree Dieback in Response to a Severe Drought.” Journal of Ecology 103: 44–57. https://doi.org/10.1111/1365‐2745.12295.

Carrer, M. 2011. “Individualistic and Time‐Varying Tree‐Ring Growth to Climate Sensitivity.” PLoS One 6: e22813. https://doi.org/10.1371/journal.pone.0022813.

Castagneri, D., G. Vacchiano, A. Hacket‐Pain, R. J. DeRose, T. Klein, and A. Bottero. 2022. “Meta‐Analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought.” Ecosystems 25: 30–43. https://doi.org/10.1007/s10021‐021‐00638‐4.

Caudullo, G., W. Tinner, and D. de Rigo. 2016. “Picea abies in Europe: distribution, habitat, usage and threats.” In European Atlas of Forest Tree Species, 114–116. Luxemburg: European Commission.

Cienciala, E., J. Altman, J. Doležal, et al. 2018. “Increased Spruce Tree Growth in Central Europe Since 1960s.” Science of the Total Environment 619–620: 1637–1647. https://doi.org/10.1016/j.scitotenv.2017.10.138.

Cook, E. R. 1987. “The Decomposition of Tree‐Ring Series for Environmental Studies.” Tree‐Ring Bulletin 47: 37–59.

Coops, N. C., P. Tompalski, T. R. H. Goodbody, et al. 2021. “Modelling Lidar‐Derived Estimates of Forest Attributes Over Space and Time: A Review of Approaches and Future Trends.” Remote Sensing of Environment 260: 112477. https://doi.org/10.1016/j.rse.2021.112477.

Costa, A., S. Salvidio, J. Penner, and M. Basile. 2021. “Time‐For‐Space Substitution in N‐Mixture Models for Estimating Population Trends: A Simulation‐Based Evaluation.” Scientific Reports 11: 1–10. https://doi.org/10.1038/s41598‐021‐84010‐5.

D'Andrea, G., V. Šimůnek, O. Pericolo, et al. 2023. “Growth Response of Norway Spruce (Picea abies [L.] Karst.) in Central Bohemia (Czech Republic) to Climate Change.” Forests 14: 1215. https://doi.org/10.3390/f14061215.

D'Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini. 2008. “On the “Divergence Problem” in Northern Forests: A Review of the Tree‐Ring Evidence and Possible Causes.” Global and Planetary Change 60: 289–305. https://doi.org/10.1016/j.gloplacha.2007.03.004.

De Martonne, E. 1926. “Une nouvelle fonction climatologique: L'indice d'aridité.” La Meteorol 35: 449–458.

Deslauriers, A., H. Morin, C. Urbinati, and M. Carrer. 2003. “Daily Weather Response of Balsam Fir (Abies balsamea (L.) Mill.) Stem Radius Increment From Dendrometer Analysis in the Boreal Forests of Quebec (Canada).” Trees 17: 477–484. https://doi.org/10.1007/s00468‐003‐0260‐4.

Di Cosmo, L., D. G. Giuliani, M. M. D. Dickson, M. Maria, and G. Gasparini. 2020. “An Individual‐Tree Linear Mixed‐Effects Model for Predicting the Basal Area Increment of Major Forest Species in Southern Europe.” Forestry Systems 29: e019.

Díaz‐Martínez, P., P. Ruiz‐Benito, J. Madrigal‐González, A. Gazol, and E. Andivia. 2023. “Positive Effects of Warming Do Not Compensate Growth Reduction due to Increased Aridity in Mediterranean Mixed Forests.” Ecosphere 14: 1–14. https://doi.org/10.1002/ecs2.4380.

Diers, M., C. Leuschner, C. Dulamsuren, T. C. Schulz, and R. Weigel. 2024. “Increasing Winter Temperatures Stimulate Scots Pine Growth in the North German Lowlands Despite Stationary Sensitivity to Summer Drought.” Ecosystems 27: 428–442. https://doi.org/10.1007/s10021‐023‐00897‐3.

Diers, M., R. Weigel, and C. Leuschner. 2023. “Both Climate Sensitivity and Growth Trend of European Beech Decrease in the North German Lowlands, While Scots Pine Still Thrives, Despite Growing Sensitivity.” Trees 37: 523–543. https://doi.org/10.1007/s00468‐022‐02369‐y.

Domke, G. M., S. N. Oswalt, B. F. Walters, and R. S. Morin. 2020. “Tree planting has the potential to increase carbon sequestration capacity of forests in the United States.” Proceedings of the National Academy of Sciences of the USA 1: 24649–24651. https://doi.org/10.1073/pnas.2010840117.

Esper, J., S. S. George, K. Anchukaitis, et al. 2018. “Large‐Scale, Millennial‐Length Temperature Reconstructions From Tree‐Rings.” Dendrochronologia 50: 81–90. https://doi.org/10.1016/j.dendro.2018.06.001.

Etzold, S., M. Ferretti, G. J. Reinds, et al. 2020. “Nitrogen Deposition Is the Most Important Environmental Driver of Growth of Pure, Even‐Aged and Managed European Forests.” Forest Ecology and Management 458: 117762. https://doi.org/10.1016/j.foreco.2019.117762.

Evans, M. E. K., R. Justin Derose, S. Klesse, et al. 2022. “Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide Drawdown of Atmospheric CO2.” Bioscience 72: 233–246. https://doi.org/10.1093/biosci/biab119.

FAO. 2020. “Global Forest Assessment Resources 2020 Main Report.” Rome. https://doi.org/10.4324/9781315184487‐1.

Forzieri, G., M. Girardello, G. Ceccherini, et al. 2021. “Emergent Vulnerability to Climate‐Driven Disturbances in European Forests.” Nature Communications 12: 1–12. https://doi.org/10.1038/s41467‐021‐21399‐7.

Fritts, H. C. 1972. “Tree Rings and Climate.” Scientific American 226: 92–100. https://doi.org/10.1038/scientificamerican0572‐92.

Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister. 2014. “Updated High‐Resolution Grids of Monthly Climatic Observations ‐ The CRU TS3.10 Dataset.” International Journal of Climatology 34: 623–642. https://doi.org/10.1002/joc.3711.

Harrison, X. A., L. Donaldson, M. E. Correa‐Cano, et al. 2018. “A Brief Introduction to Mixed Effects Modelling and Multi‐Model Inference in Ecology.” PeerJ 2018: 1–32. https://doi.org/10.7717/peerj.4794.

Hartmann, H., A. Bastos, A. J. Das, et al. 2022. “Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide.” Annual Review of Plant Biology 73: 673–702. https://doi.org/10.1146/annurev‐arplant‐102820‐012804.

Heilman, K. A., M. C. Dietze, A. A. Arizpe, et al. 2022. “Ecological Forecasting of Tree Growth: Regional Fusion of Tree‐Ring and Forest Inventory Data to Quantify Drivers and Characterize Uncertainty.” Global Change Biology 28: 1–19. https://doi.org/10.1111/gcb.16038.

Hlásny, T., S. Zimová, K. Merganičová, P. Štěpánek, R. Modlinger, and M. Turčáni. 2021. “Devastating Outbreak of Bark Beetles in The Czech Republic: Drivers, Impacts, and Management Implications.” Forest Ecology and Management 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075.

Holland, E. A., B. H. Braswell, J. Sulzman, and J. F. Lamarque. 2005. “Nitrogen Deposition Onto the United States and Western Europe: Synthesis of Observations and Models.” Ecological Applications 15: 38–57. https://doi.org/10.1890/03‐5162.

Housset, J. M., S. Nadeau, N. Isabel, et al. 2018. “Tree Rings Provide a New Class of Phenotypes for Genetic Associations That Foster Insights Into Adaptation of Conifers to Climate Change.” New Phytologist 218: 630–645. https://doi.org/10.1111/nph.14968.

Houston Durrant, T., D. de Rigo, and G. Caudullo. 2016. “Pinus sylvestris In Europe: Distribution, Habitat, Usage and Threats.” In European Atlas of Forest Tree Species, edited by J. San‐Miguel‐Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, and A. Mauri, E016b94. Luxembourg: European Union.

IPCC. 2021. “Climate Change 2021: The Physical Science Basis.” In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom: Cambridge University Press.

Janssens, I. A., A. Freibauer, P. Ciais, et al. 2003. “Europe's Terrestrial Biosphere absorbs 7 to 12% of European Anthropogenic CO2 Emissions.” Science 300: 1538–1542.

Jevšenak, J., M. Klisz, J. Mašek, et al. 2024. “Incorporating High‐Resolution Climate, Remote Sensing and Topographic Data to Map Annual Forest Growth in Central and Eastern Europe.” Science of the Total Environment 913: 169692. https://doi.org/10.1016/j.scitotenv.2023.169692.

Jiang, Y., W. Marchand, M. Rydval, et al. 2024. “Drought Resistance of Major Tree Species in The Czech Republic.” Agricultural and Forest Meteorology 348: 109933. https://doi.org/10.1016/j.agrformet.2024.109933.

Jyske, T., H. Mäkinen, T. Kalliokoski, and P. Nöjd. 2014. “Intra‐Annual Tracheid Production of Norway Spruce and Scots Pine Across a Latitudinal Gradient in Finland.” Agricultural and Forest Meteorology 194: 241–254. https://doi.org/10.1016/j.agrformet.2014.04.015.

Karger, D. N., O. Conrad, J. Böhner, et al. 2017. “Climatologies at High Resolution for the earth's Land Surface Areas.” Scientific Data 4: 1–20. https://doi.org/10.1038/sdata.2017.122.

Karger, D. N., O. Conrad, J. Böhner, et al. 2021. “Climatologies at High Resolution for the earth's Land Surface Areas.” EnviDat. https://doi.org/10.16904/envidat.228.

Karger, D. N., and N. E. Zimmermann. 2018. “CHELSAcruts ‐ High Resolution Temperature and Precipitation Timeseries for the 20th Century and Beyond.” EnviDat. https://doi.org/10.16904/envidat.159.

Keenan, R. J. 2015. “Climate Change Impacts and Adaptation in Forest Management: A Review.” Annals of Forest Science 72: 145–167. https://doi.org/10.1007/s13595‐014‐0446‐5.

Klesse, S., R. J. DeRose, F. Babst, et al. 2020. “Continental‐Scale Tree‐Ring‐Based Projection of Douglas‐Fir Growth: Testing the Limits of Space‐For‐Time Substitution.” Global Change Biology 26: 5146–5163. https://doi.org/10.1111/gcb.15170.

Koralewski, T. E., H. H. Wang, W. E. Grant, and T. D. Byram. 2015. “Plants on the Move: Assisted Migration of Forest Trees in the Face of Climate Change.” Forest Ecology and Management 344: 30–37. https://doi.org/10.1016/j.foreco.2015.02.014.

Leuschner, C. 2020. “Drought Response of European Beech (Fagus sylvatica L.)–A Review.” Perspectives in Plant Ecology, Evolution and Systematics 47: 125576. https://doi.org/10.1016/j.ppees.2020.125576.

Lévesque, M., M. Saurer, R. Siegwolf, et al. 2013. “Drought Response of Five Conifer Species Under Contrasting Water Availability Suggests High Vulnerability of Norway Spruce and European Larch.” Global Change Biology 19: 3184–3199. https://doi.org/10.1111/gcb.12268.

Martínez del Castillo, E., L. A. Longares, J. Gričar, et al. 2016. “Living on the Edge: Contrasted Wood‐Formation Dynamics in Fagus Sylvatica and Pinus sylvestris Under Mediterranean Conditions.” Frontiers in Plant Science 7: 370. https://doi.org/10.3389/fpls.2016.00370.

Martínez del Castillo, E., P. Prislan, J. Gričar, et al. 2018. “Challenges for Growth of Beech and Co‐Occurring Conifers in a Changing Climate Context.” Dendrochronologia 52: 1–10. https://doi.org/10.1016/J.DENDRO.2018.09.001.

Martínez del Castillo, E., M. C. A. Torbenson, F. Reinig, et al. 2024. “Diverging Growth Trends and Climate Sensitivities of Individual Pine Trees After the 1976 Extreme Drought.” Science of the Total Environment 946: 174370. https://doi.org/10.1016/j.scitotenv.2024.174370.

Martínez del Castillo, E., C. S. Zang, A. Buras, et al. 2022. “Climate‐Change‐Driven Growth Decline of European Beech Forests.” Communications Biology 5: 1–9. https://doi.org/10.1038/s42003‐022‐03107‐3.

McDowell, N. G., C. D. Allen, K. Anderson‐Teixeira, et al. 2020. “Pervasive Shifts in Forest Dynamics in a Changing World.” Science 368: eaaz9463. https://doi.org/10.1126/science.aaz9463.

Menard, S. 2001. Applied Logistic Regression Analysis. 2nd ed. London: Sage Publications.

Montesinos López, O. A., A. Montesinos López, and J. Crossa. 2022. Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer. https://doi.org/10.1007/978‐3‐030‐89010‐0.

Moran, E., J. Lauder, C. Musser, A. Stathos, and M. Shu. 2017. “The Genetics of Drought Tolerance in Conifers.” New Phytologist 216: 1034–1048. https://doi.org/10.1111/nph.14774.

Morin, X., L. Fahse, H. Jactel, M. Scherer‐Lorenzen, R. García‐Valdés, and H. Bugmann. 2018. “Long‐Term Response of Forest Productivity to Climate Change Is Mostly Driven by Change in Tree Species Composition.” Scientific Reports 8: 1–12. https://doi.org/10.1038/s41598‐018‐23763‐y.

Norinder, U., A. Rybacka, and P. L. Andersson. 2016. “Conformal Prediction to Define Applicability Domain ‐ A Case Study on Predicting ER and AR Binding.” SAR and QSAR in Environmental Research 27: 303–316. https://doi.org/10.1080/1062936X.2016.1172665.

Panagos, P., M. Van Liedekerke, P. Borrelli, et al. 2022. “European Soil Data Centre 2.0: Soil Data and Knowledge in Support of the EU Policies.” European Journal of Soil Science 73: 1–18. https://doi.org/10.1111/ejss.13315.

Patacca, M., M. Lindner, M. E. Lucas‐Borja, et al. 2023. “Significant Increase in Natural Disturbance Impacts on European Forests Since 1950.” Global Change Biology 29: 1359–1376. https://doi.org/10.1111/gcb.16531.

Peltier, D. M. P., and K. Ogle. 2020. “Tree Growth Sensitivity to Climate Is Temporally Variable.” Ecology Letters 23: 1561–1572. https://doi.org/10.1111/ele.13575.

Ponocná, T., B. Spyt, R. Kaczka, U. Büntgen, and V. Treml. 2016. “Growth Trends and Climate Responses of Norway Spruce Along Elevational Gradients in East‐Central Europe.” Trees 30: 1633–1646. https://doi.org/10.1007/s00468‐016‐1396‐3.

Pretzsch, H., M. del Río, C. Arcangeli, et al. 2023. “Forest Growth in Europe Shows Diverging Large Regional Trends.” Scientific Reports 13: 1–13. https://doi.org/10.1038/s41598‐023‐41077‐6.

Pretzsch, H., T. Hilmers, P. Biber, et al. 2020. “Evidence of Elevation‐Specific Growth Changes of Spruce, Fir, and Beech in European Mixed Mountain Forests During the Last Three Centuries.” Canadian Journal of Forest Research 50: 689–703. https://doi.org/10.1139/cjfr‐2019‐0368.

Pretzsch, H., T. Hilmers, E. Uhl, et al. 2021. “European Beech Stem Diameter Grows Better in Mixed Than in Mono‐Specific Stands at the Edge of Its Distribution in Mountain Forests.” European Journal of Forest Research 140: 127–145. https://doi.org/10.1007/s10342‐020‐01319‐y.

R Core Team. 2020. “R: A Language and Environment for Statistical Computing [WWW Document].” Vienna R Foundation Statistical Computing. www.R‐project.org/.

Seidl, R., D. Thom, M. Kautz, et al. 2017. “Forest Disturbances Under Climate Change.” Nature Climate Change 7: 395–402. https://doi.org/10.1038/nclimate3303.

Senf, C., A. Buras, C. S. Zang, A. Rammig, and R. Seidl. 2020. “Excess Forest Mortality Is Consistently Linked to Drought Across Europe.” Nature Communications 11: 1–8. https://doi.org/10.1038/s41467‐020‐19924‐1.

Sheng, Q., Z. Liu, and L. Dong. 2023. “A Climate‐Spatial Matrix Growth Model for Major Tree Species in Lesser Khingan Mountains and Responses of Forest Dynamics Change to Different Representative Concentration Path Scenarios.” Frontiers in Forests and Global Change 6: 1–18. https://doi.org/10.3389/ffgc.2023.1309189.

Sidor, C. G., I. Popa, R. Vlad, and P. Cherubini. 2015. “Different Tree‐Ring Responses of Norway Spruce to Air Temperature Across an Altitudinal Gradient in the Eastern Carpathians (Romania).” Trees 29: 985–997. https://doi.org/10.1007/s00468‐015‐1178‐3.

Sommerfeld, A., C. Senf, B. Buma, et al. 2018. “Patterns and Drivers of Recent Disturbances Across the Temperate Forest Biome.” Nature Communications 9: 4355. https://doi.org/10.1038/s41467‐018‐06788‐9.

St. George, S. 2014. “An Overview of Tree‐Ring Width Records Across the Northern Hemisphere.” Quaternary Science Reviews 95: 132–150. https://doi.org/10.1016/j.quascirev.2014.04.029.

Stolz, J., E. van der Maaten, H. Kalanke, J. Martin, M. Wilmking, and M. van der Maaten‐Theunissen. 2021. “Increasing Climate Sensitivity of Beech and Pine Is Not Mediated by Adaptation and Soil Characteristics Along a Precipitation Gradient in Northeastern Germany.” Dendrochronologia 67: 125834. https://doi.org/10.1016/j.dendro.2021.125834.

Takolander, A., T. Hickler, L. Meller, and M. Cabeza. 2019. “Comparing Future Shifts in Tree Species Distributions Across Europe Projected by Statistical and Dynamic Process‐Based Models.” Regional Environmental Change 19: 251–266. https://doi.org/10.1007/s10113‐018‐1403‐x.

Tebaldi, C., K. Debeire, V. Eyring, et al. 2021. “Climate Model Projections From the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6.” Earth System Dynamics 12: 253–293. https://doi.org/10.5194/esd‐12‐253‐2021.

Treml, V., J. Mašek, J. Tumajer, et al. 2022. “Trends in Climatically Driven Extreme Growth Reductions of Picea Abies and Pinus sylvestris in Central Europe.” Global Change Biology 28: 557–570. https://doi.org/10.1111/gcb.15922.

Tumajer, J., J. Altman, P. Štěpánek, V. Treml, J. Doležal, and E. Cienciala. 2017. “Increasing Moisture Limitation of Norway Spruce in Central Europe Revealed by Forward Modelling of Tree Growth in Tree‐Ring Network.” Agricultural and Forest Meteorology 247: 56–64. https://doi.org/10.1016/j.agrformet.2017.07.015.

Vacek, Z., S. Vacek, and J. Cukor. 2023. “European Forests Under Global Climate Change: Review of Tree Growth Processes, Crises and Management Strategies.” Journal of Environmental Management 332: 117353. https://doi.org/10.1016/j.jenvman.2023.117353.

van der Maaten, E., A. Hamann, M. van der Maaten‐Theunissen, et al. 2017. “Species Distribution Models Predict Temporal but Not Spatial Variation in Forest Growth.” Ecology and Evolution 7: 2585–2594. https://doi.org/10.1002/ece3.2696.

Vitasse, Y., S. Ursenbacher, G. Klein, et al. 2021. “Phenological and Elevational Shifts of Plants, Animals and Fungi Under Climate Change in the European Alps.” Biological Reviews 96: 1816–1835. https://doi.org/10.1111/brv.12727.

Wang, J., A. R. Taylor, and L. D'Orangeville. 2023. “Warming‐Induced Tree Growth May Help Offset Increasing Disturbance Across the Canadian Boreal Forest.” Proceedings of the National Academy of Sciences 120: 2017. https://doi.org/10.1073/pnas.

Weigel, R., H. A. L. Henry, I. Beil, et al. 2021. “Ecosystem Processes Show Uniform Sensitivity to Winter Soil Temperature Change Across a Gradient From Central to Cold Marginal Stands of a Major Temperate Forest Tree.” Ecosystems 24: 1545–1560. https://doi.org/10.1007/s10021‐021‐00600‐4.

Weiner, J., and S. C. Thomas. 2001. “The Nature of Tree Growth and the “Age‐Related Decline in Forest Productivity”.” Oikos 94: 374–376. https://doi.org/10.1034/j.1600‐0706.2001.940219.x.

Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. “Mixed Effects Models and Extensions in Ecology With R.” In Statistics for Biology and Health. New York: Springer.

Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. “A Protocol for Data Exploration to Avoid Common Statistical Problems.” Methods in Ecology and Evolution 1: 3–14. https://doi.org/10.1111/j.2041‐210x.2009.00001.x.

Zald, H. S. J., T. A. Spies, M. E. Harmon, and M. J. Twery. 2016. “Forest carbon calculators: A review for managers, policymakers and educators.” Journal of Forestry 114: 134–143. https://doi.org/10.5849/jof.15‐019.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...