Polymer Nanomedicines with Ph-Sensitive Release of Dexamethasone for the Localized Treatment of Inflammation

. 2020 Jul 25 ; 12 (8) : . [epub] 20200725

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32722403

Grantová podpora
19-00956Y Grantová Agentura České Republiky
MSMT LTAUSA18083 Ministerstvo Školství, Mládeže a Tělovýchovy
BIOCEV-FAR LQ1604 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/1.1.00/02.0109 Ministerstvo Školství, Mládeže a Tělovýchovy
ANR-11-INBS-0006 France Life Imaging

Odkazy

PubMed 32722403
PubMed Central PMC7465548
DOI 10.3390/pharmaceutics12080700
PII: pharmaceutics12080700
Knihovny.cz E-zdroje

Polymer-drug conjugates have several advantages in controlled drug delivery to inflammation as they can accumulate and release the drug in inflamed tissues or cells, which could circumvent the shortcomings of current therapy. To improve the therapeutic potential of polymer-drug conjugates in joint inflammation, we synthesized polymer conjugates based on N-(2-hydroxypropyl) methacrylamide) copolymers labeled with a near-infrared fluorescent dye and covalently linked to the anti-inflammatory drug dexamethasone (DEX). The drug was bound to the polymer via a spacer enabling pH-sensitive drug release in conditions mimicking the environment inside inflammation-related cells. An in vivo murine model of adjuvant-induced arthritis was used to confirm the accumulation of polymer conjugates in arthritic joints, which occurred rapidly after conjugate application and remained until the end of the experiment. Several tested dosage schemes of polymer DEX-OPB conjugate showed superior anti-inflammatory efficacy. The highest therapeutic effect was obtained by repeated i.p. application of polymer conjugate (3 × 1 mg/kg of DEX eq.), which led to a reduction in the severity of inflammation in the ankle by more than 90%, compared to 40% in mice treated with free DEX.

Zobrazit více v PubMed

El-Gabalawy H., Guenther L.C., Bernsein C.N. Epidemiology of Immune-Mediated Inflammatory Diseases: Incidence, Prevalence, Natural History, and Comorbidities. J. Rheumatol. Suppl. 2010;85:2–10. doi: 10.3899/jrheum.091461. PubMed DOI

Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208. PubMed DOI PMC

McInnes I.B., Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011;365:2205–2219. doi: 10.1056/NEJMra1004965. PubMed DOI

Firestein G.S. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356–361. doi: 10.1038/nature01661. PubMed DOI

Grassi W., De Angelis R., Lamanna G., Cervini C. The clinical features of rheumatoid arthritis. Eur. J. Radiol. 1998;27:S18–S24. doi: 10.1016/S0720-048X(98)00038-2. PubMed DOI

Zhou S., Zou H., Chen G., Huang G. Synthesis and Biological Activities of Chemical Drugs for the Treatment of Rheumatoid Arthritis. Top. Curr. Chem. 2019;377:28. doi: 10.1007/s41061-019-0252-5. PubMed DOI

Tiwari G., Tiwari R., Sriwastawa B., Bhati L., Pandey S., Pandey P., Bannerjee S.K. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012;2:2–11. doi: 10.4103/2230-973X.96920. PubMed DOI PMC

Xiao S., Tang Y., Lv Z., Lin Y., Chen L. Nanomedicine-advantages for their use in rheumatoid arthritis theranostics. J. Control. Release. 2019;316:302–316. doi: 10.1016/j.jconrel.2019.11.008. PubMed DOI

Lee Y.K., Kim S.-W., Park J.-Y., Kang W.C., Kang Y.J., Khang D. Suppression of human arthritis synovial fibroblasts inflammation using dexamethasone-carbon nanotubes via increasing caveolin-dependent endocytosis and recovering mitochondrial membrane potential. Int. J. Nanomed. 2017;12:5761–5779. doi: 10.2147/IJN.S142122. PubMed DOI PMC

Ni R., Song G., Fu X., Song R., Li L., Pu W., Gao J., Hu J., Liu Q., He F., et al. Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials. 2020;232:119730. doi: 10.1016/j.biomaterials.2019.119730. PubMed DOI

Yuan F., Quan L., Cui L., Goldring S.R., Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012;64:1205–1219. doi: 10.1016/j.addr.2012.03.006. PubMed DOI PMC

Kopecek J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Koziolová E., Goel S., Chytil P., Janoušková O., Barnhart T.E., Cai W., Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC

Quan L., Zhang Y., Crielaard B.J., Dusad A., Lele S.M., Rijcken C.J.F., Metselaar J.M., Kostková H., Etrych T., Ulbrich K., et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8:458–466. doi: 10.1021/nn4048205. PubMed DOI PMC

Goldie I., Nachemson A. Synovial pH in rheumatoid knee-joints. I. The effect of synovectomy. Acta Orthop. Scand. 1969;40:634–641. doi: 10.3109/17453676908989529. PubMed DOI

Quan L., Zhang Y., Dusad A., Ren K., Purdue P.E., Goldring S.R., Wang D. The Evaluation of the Therapeutic Efficacy and Side Effects of a Macromolecular Dexamethasone Prodrug in the Collagen-Induced Arthritis Mouse Model. Pharm. Res. 2016;33:186–193. doi: 10.1007/s11095-015-1776-1. PubMed DOI PMC

Wei X., Li F., Zhao G., Chhonker Y.S., Averill C., Galdamez J., Purdue P.E., Wang X., Fehringer E.V., Garvin K.L., et al. Pharmacokinetic and Biodistribution Studies of HPMA Copolymer Conjugates in an Aseptic Implant Loosening Mouse Model. Mol. Pharm. 2017;14:1418–1428. doi: 10.1021/acs.molpharmaceut.7b00045. PubMed DOI PMC

Quan L., Yuan F., Liu X., Huang J., Alnouti Y., Wang D. Pharmacokinetic and Biodistribution Studies of N-(2-Hydroxypropyl)methacrylamide Copolymer-Dexamethasone Conjugates in Adjuvant-Induced Arthritis Rat Model. Mol. Pharm. 2010;7:1041–1049. doi: 10.1021/mp100132h. PubMed DOI PMC

Seymour L.W., Duncan R., Strohalm J., Kopeček J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J. Biomed. Mater. Res. 1987;21:1341–1358. doi: 10.1002/jbm.820211106. PubMed DOI

Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Ishitake K., Satoh K., Kamigaito M., Okamoto Y. Stereogradient Polymers Formed by Controlled/Living Radical Polymerization of Bulky Methacrylate Monomers. Angew. Chemie Int. Ed. 2009;48:1991–1994. doi: 10.1002/anie.200805168. PubMed DOI

Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization:  End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Krakovicová H., Etrych T., Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009;37:405–412. doi: 10.1016/j.ejps.2009.03.011. PubMed DOI

Brzezinski M.R., Abraham T.L., Stone C.L., Dean R.A., Bosron W.F. Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochem. Pharmacol. 1994;48:1747–1755. doi: 10.1016/0006-2952(94)90461-8. PubMed DOI

Wright A.J., Husson Z.M.A., Hu D.-E., Callejo G., Brindle K.M., Smith E.S.J. Increased hyperpolarized [1-(13) C] lactate production in a model of joint inflammation is not accompanied by tissue acidosis as assessed using hyperpolarized (13) C-labelled bicarbonate. NMR Biomed. 2018;31:e3892. doi: 10.1002/nbm.3892. PubMed DOI PMC

Clavel G., Marchiol-Fournigault C., Renault G., Boissier M.-C., Fradelizi D., Bessis N. Ultrasound and Doppler micro-imaging in a model of rheumatoid arthritis in mice. Ann. Rheum. Dis. 2008;67:1765–1772. doi: 10.1136/ard.2007.083915. PubMed DOI

Brand D.D., Latham K.A., Rosloniec E.F. Collagen-induced arthritis. Nat. Protoc. 2007;2:1269–1275. doi: 10.1038/nprot.2007.173. PubMed DOI

Parvathy S.S., Masocha W. Gait analysis of C57BL/6 mice with complete Freund’s adjuvant-induced arthritis using the CatWalk system. BMC Musculoskelet. Disord. 2013;14:14. doi: 10.1186/1471-2474-14-14. PubMed DOI PMC

Samtani M.N., Jusko W.J. Comparison of dexamethasone pharmacokinetics in female rats after intravenous and intramuscular administration. Biopharm. Drug Dispos. 2005;26:85–91. doi: 10.1002/bdd.435. PubMed DOI PMC

Gross S., Gammon S.T., Moss B.L., Rauch D., Harding J., Heinecke J.W., Ratner L., Piwnica-Worms D. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat. Med. 2009;15:455–461. doi: 10.1038/nm.1886. PubMed DOI PMC

Cheraiet Z., Hessainia S., Ouarna S., Berredjem M., Aouf N.-E. A simple and eco-sustainable method for the O-Boc protection/deprotection of various phenolic structures under water-mediated/catalyst-free conditions. Green Chem. Lett. Rev. 2013;6:211–216. doi: 10.1080/17518253.2012.738371. DOI

Liu X.-M., Quan L.-D., Tian J., Alnouti Y., Fu K., Thiele G.M., Wang D. Synthesis and evaluation of a well-defined HPMA copolymer-dexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm. Res. 2008;25:2910–2919. doi: 10.1007/s11095-008-9683-3. PubMed DOI PMC

Bachmann K. In: Drug Metabolism in Pharmacology: Principles and Practice. Hacker M., Messer W., Bachmann K., editors. Academic Press; San Diego, CA, USA: 2009. pp. 131–173.

Laizure S.C., Herring V., Hu Z., Witbrodt K., Parker R.B. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy. 2013;33:210–222. doi: 10.1002/phar.1194. PubMed DOI PMC

Etrych T., Subr V., Strohalm J., Sírová M., Ríhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Naik P.N., Chimatadar S.A., Nandibewoor S.T. Interaction between a potent corticosteroid drug-dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation infrared spectroscopy study. J. Photochem. Photobiol., B. 2010;100:147–159. doi: 10.1016/j.jphotobiol.2010.05.014. PubMed DOI

Alexis F., Pridgen E., Molnar L.K., Farokhzad O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharmaceutics. 2008;5:505–515. doi: 10.1021/mp800051m. PubMed DOI PMC

Marchettini P., Stuart O.A., Mohamed F., Yoo D., Sugarbaker P.H. Docetaxel: Pharmacokinetics and tissue levels after intraperitoneal and intravenous administration in a rat model. Cancer Chemother. Pharmacol. 2002;49:499–503. doi: 10.1007/s00280-002-0439-1. PubMed DOI

Agrawal S., Temsamani J., Tang J.Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA. 1991;88:7595–7599. doi: 10.1073/pnas.88.17.7595. PubMed DOI PMC

Harivardhan Reddy L., Sharma R.K., Chuttani K., Mishra A.K., Murthy R.S.R. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J. Control. Release. 2005;105:185–198. doi: 10.1016/j.jconrel.2005.02.028. PubMed DOI

Chen C.-C., Li J.-J., Guo N.-H., Chang D.-Y., Wang C.-Y., Chen J.-T., Lin W.-J., Chi K.-H., Lee Y.-J., Liu R.-S., et al. Evaluation of the Biological Behavior of a Gold Nanocore-Encapsulated Human Serum Albumin Nanoparticle (Au@HSANP) in a CT-26 Tumor/Ascites Mouse Model after Intravenous/Intraperitoneal Administration. Int. J. Mol. Sci. 2019;20:217. doi: 10.3390/ijms20010217. PubMed DOI PMC

Fischer B.D., Adeyemo A., O’Leary M.E., Bottaro A. Animal models of rheumatoid pain: Experimental systems and insights. Arthritis Res. Ther. 2017;19:146. doi: 10.1186/s13075-017-1361-6. PubMed DOI PMC

Lim Y.H., Tiemann K.M., Hunstad D.A., Elsabahy M., Wooley K.L. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wires Nanomed. Nanobi. 2016;8:842–871. doi: 10.1002/wnan.1401. PubMed DOI PMC

Owens D.E., III, Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI

Frank M.M., Fries L.F. The role of complement in inflammation and phagocytosis. Immunol. Today. 1991;12:322–326. doi: 10.1016/0167-5699(91)90009-I. PubMed DOI

Lukas G., Brindle S.D., Greengard P. The route of absorption of intraperitoneally administered compounds. J. Pharmacol. Exp. Ther. 1971;178:562–564. PubMed

Claassen V. Intraperitoneal Drug Administration. In: Huston J.P., editor. Neglected Factors in Pharmacology and Neuroscience Research. Volume 12. Elsevier; Amsterdam, The Netherlands: 1994. pp. 46–58.

Liu D., Ahmet A., Ward L., Krishnamoorthy P., Mandelcorn E.D., Leigh R., Brown J.P., Cohen A., Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 2013;9:30. doi: 10.1186/1710-1492-9-30. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...