Biodegradable Covalently Crosslinked Poly[N-(2-Hydroxypropyl) Methacrylamide] Nanogels: Preparation and Physicochemical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
Ministry of Education Youth and Sports
PubMed
38257062
PubMed Central
PMC10821105
DOI
10.3390/polym16020263
PII: polym16020263
Knihovny.cz E-zdroje
- Klíčová slova
- N-(2-hydroxypropyl) methacrylamide, biodegradable, dispersion polymerization, glutathione, nanogel,
- Publikační typ
- časopisecké články MeSH
Recently, suitably sized polymer-based nanogels containing functional groups for the binding of biologically active substances and ultimately degradable to products that can be removed by glomerular filtration have become extensively studied systems in the field of drug delivery. Herein, we designed and tailored the synthesis of hydrophilic and biodegradable poly[N-(2-hydroxypropyl) methacrylamide-co-N,N'-bis(acryloyl) cystamine-co-6-methacrylamidohexanoyl hydrazine] (PHPMA-BAC-BMH) nanogels. The facile and versatile dispersion polymerization enabled the preparation of nanogels with a diameter below 50 nm, which is the key parameter for efficient and selective passive tumor targeting. The effects of the N,N'-bis(acryloyl) cystamine crosslinker, polymerization composition, and medium including H2O/MetCel and H2O/EtCel on the particle size, particle size distribution, morphology, and polymerization kinetics and copolymer composition were investigated in detail. We demonstrated the formation of a 38 nm colloidally stable PHPMA-BAC-BMH nanogel with a core-shell structure that can be rapidly degraded in the presence of 10 mM glutathione solution under physiologic conditions. The nanogels were stable in an aqueous solution modeling the bloodstream; thus, these nanogels have the potential to become highly important carriers in the drug delivery of various molecules.
Zobrazit více v PubMed
Liu S., Tang J., Ji F., Lin W., Chen S. Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application. Gels. 2022;8:46. doi: 10.3390/gels8010046. PubMed DOI PMC
Zhao Q., Zhang S., Wu F., Li D., Zhang X., Chen W., Xing B. Rational design of nanogels for overcoming the biological barriers in various administration routes. Angew. Chem. Int. Ed. 2021;60:14760–14778. doi: 10.1002/anie.201911048. PubMed DOI
Gray D.M., Town A.R., Niezabitowska E., Rannard S.P., McDonald T.O. Dual-responsive degradable core-shell nanogels with tuneable aggregation behavior. RSC Adv. 2022;12:2196–2206. doi: 10.1039/D1RA07093B. PubMed DOI PMC
Hajebi S., Abdollahi A., Roghani-Mamaqani H., Salami-Kalajahi M. Temperature-responsive poly(N-isopropylacrylamide) nanogels: The role of hollow cavities and different shell cross-linking densities on doxorubicin loading and release. Langmuir. 2020;36:2683–2694. doi: 10.1021/acs.langmuir.9b03892. PubMed DOI
Kaniewska K., Marcisz K., Karbarz M. Transport of ionic species affected by interactions with a pH-sensitive monolayer of microgel particles attached to electrode surface. J. Electroanal. Chem. 2023;931:117183. doi: 10.1016/j.jelechem.2023.117183. DOI
Clegg J.R., Irani A.S., Ander E.W., Ludolph C.M., Venkataraman A.K., Zhong J.X., Peppas N.A. Synthetic networks with tunable responsiveness, biodegradation, and molecular recognition for precision medicine applications. Sci. Adv. 2023;5:eaax7946. doi: 10.1126/sciadv.aax7946. PubMed DOI PMC
Maruf A., Milewska M., Lalik A., Student S., Wandzik I. A simple synthesis of reduction-responsive acrylamide-type nanogels for miRNA delivery. Molecules. 2023;28:761. doi: 10.3390/molecules28020761. PubMed DOI PMC
Oh J.K., Bencherif S.A., Matyjaszewski K. Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer. 2009;50:4407–4423. doi: 10.1016/j.polymer.2009.06.045. DOI
Kawaguchi S., Ito K. Dispersion Polymerization. In: Okubo M., editor. Polymer Particles. Springer; Berlin/Heidelberg, Germany: 2005. pp. 299–328. DOI
Uyama H., Kobayashi S. Dispersion polymerization of styrene in aqueous alcohol solution: Effects of reaction parameters on the polymer particle formation. Polym. Int. 1994;34:339–344. doi: 10.1002/pi.1994.210340315. DOI
Macková H., Horák D. Effects of the reaction parameters on the properties of thermosensitive poly(N-isopropylacrylamide) microspheres prepared by precipitation and dispersion polymerization. J. Polym. Sci. Part A Polym. Chem. 2006;44:968–982. doi: 10.1002/pola.21223. DOI
Uyama H., Kato H., Kobayashi S. Dispersion polymerization of N-vinylformamide in polar media. Preparation of monodisperse hydrophilic polymer particles. Polym. J. 1994;26:858–863. doi: 10.1295/polymj.26.858. DOI
Takahashi K., Uyama H., Kobayashi S. Preparation of reactive monodisperse particles in the micron range by dispersion polymerization of glycidyl methacrylate. Polym. J. 1998;30:684–686. doi: 10.1295/polymj.30.684. DOI
Horák D. Effect of reaction parameters on the particle size in the dispersion polymerization of 2-hydroxyethyl methacrylate. J. Polym. Sci. Part A Polym. Chem. 1999;37:3785–3792. doi: 10.1002/(SICI)1099-0518(19991015)37:20<3785::AID-POLA7>3.0.CO;2-U. DOI
Chytil P., Kostka L., Etrych T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med. 2021;11:115. doi: 10.3390/jpm11020115. PubMed DOI PMC
Talelli M., Rijcken C.J.F., van Nostrum C.F., Storm G., Hennink W.E. Micelles based on HPMA copolymers. Adv. Drug Deliv. Rev. 2010;62:231–239. doi: 10.1016/j.addr.2009.11.029. PubMed DOI
Tang M., Zhou M., Huang Y., Zhong J., Zhou Z., Luo K. Dual-sensitive and biodegradable core-crosslinked HPMA copolymer–doxorubicin conjugate-based nanoparticles for cancer therapy. Polym. Chem. 2017;8:2370–2380. doi: 10.1039/C7PY00348J. DOI
Phan H., Cavanagh R., Jacob P., Destouches D., Vacherot F., Brugnoli B., Howdle S., Taresco V., Couturaud B. Synthesis of multifunctional polymersomes prepared by polymerization-induced self-assembly. Polymers. 2023;15:3070. doi: 10.3390/polym15143070. PubMed DOI PMC
Šálek P., Zbořilová D., Pavlova E., Kočková O., Konefal R., Morávková Z., Janoušková O. Fluorescent poly[N-(2-hydroxypropyl) methacrylamide] nanogel by dispersion polymerization as a contrast agent for live-cell imaging. J. Appl. Polym. Sci. 2023;140:e54331. doi: 10.1002/app.54331. DOI
Wutzel H., Richter F.H., Li Y., Sheiko S.S., Klok H.-A. Poly[N-(2-hydroxypropyl)methacrylamide] nanogels by RAFT polymerization in inverse emulsion. Polym. Chem. 2014;5:1711–1719. doi: 10.1039/C3PY01280H. DOI
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI
Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl) methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI
Abbrent S., Mahun A., Smrčková M.D., Kobera L., Konefał R., Černoch P., Dušek K., Brus J. Copolymer chain formation of 2-oxazolines by in situ 1H-NMR spectroscopy: Dependence of sequential composition on substituent structure and monomer ratios. RSC Adv. 2021;11:10468–10478. doi: 10.1039/D1RA01509E. PubMed DOI PMC
Gottlieb H.E., Kotlyar V., Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997;62:7512–7515. doi: 10.1021/jo971176v. PubMed DOI
Filipe V., Hawe A., Jiskoot W. Critical evaluation of Nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010;27:796–810. doi: 10.1007/s11095-010-0073-2. PubMed DOI PMC
Šálek P., Filipová M., Horák D., Proks V., Janoušková O. Enhanced solid phase extraction of DNA using hydrophilic monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) microparticles. Mol. Biol. Rep. 2019;46:3063–3072. doi: 10.1007/s11033-019-04742-6. PubMed DOI
Cors M., Wrede O., Wiehemeier L., Feoktystov A., Cousin F., Hellweg T., Oberdisse J. Spatial distribution of core monomers in acrylamide-based core-shell microgels with linear swelling behavior. Sci. Rep. 2019;9:13812. doi: 10.1038/s41598-019-50164-6. PubMed DOI PMC
Ashrafizadeh M., Tam K.C., Javadi A., Abdollahi M., Sadeghnejad S., Bahramian A. Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J. Colloid Interface Sci. 2019;556:313–323. doi: 10.1016/j.jcis.2019.08.066. PubMed DOI
Ponomareva E., Tadgell B., Hildebrandt M., Krüsmann M., Prévost S., Mulvaney P., Karg M. The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels. Soft Matter. 2022;18:807–825. doi: 10.1039/D1SM01473K. PubMed DOI
Town A., Niezabitowska E., Kavanagh J., Barrow M., Kearns V.R., García-Tuñón E., McDonald T.O. Understanding the phase and morphological behavior of dispersions of synergistic dual-stimuli-responsive poly(N-isopropylacrylamide) nanogels. J. Phys. Chem. B. 2019;123:6303–6313. doi: 10.1021/acs.jpcb.9b04051. PubMed DOI PMC
Virtanen O.L.J., Richtering W. Kinetics and particle size control in non-stirred precipitation polymerization of N-isopropylacrylamide. Colloid Polym. Sci. 2014;292:1743–1756. doi: 10.1007/s00396-014-3208-x. DOI
Onita K., Onishi M., Omura T., Wakiya T., Suzuki T., Minami H. Preparation of monodisperse bio-based polymer particles via dispersion polymerization. Langmuir. 2022;38:7341–7345. doi: 10.1021/acs.langmuir.2c00946. PubMed DOI
Niezabitowska E., Town A.R., Sabagh B., Moctezuma M.D.M., Kearns V.R., Spain S.G., Rannard S.P., Mcdonald T.O. Insights into the internal structures of nanogels using a versatile Asymmetric-flow field-flow fractionation method. Nanoscale Adv. 2020;2:4713–4721. doi: 10.1039/D0NA00314J. PubMed DOI PMC
Zhou Z., Li L., Yang Y., Xu X., Huang Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials. 2014;35:6622–6635. doi: 10.1016/j.biomaterials.2014.04.059. PubMed DOI
Manimaran V., Nivetha R.P., Tamilanban T., Narayanan J., Vetriselvan S., Fuloria N.K., Chinni S.V., Sekar M., Fuloria S., Wong L.S., et al. Nanogels as novel drug nanocarriers for CNS drug delivery. Front. Mol. Biosci. 2023;10:1232109. doi: 10.3389/fmolb.2023.1232109. PubMed DOI PMC
Duracher D., Elaïssari A., Pichot C. Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization. J. Polym. Sci. Part A Polym. Chem. 1999;37:1823–1837. doi: 10.1002/(SICI)1099-0518(19990615)37:12<1823::AID-POLA12>3.0.CO;2-#. DOI
Hazot P., Chapel J.P., Pichot C., Elaissari A., Delair T. Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process: The role of the crosslinker. J. Polym. Sci. Part A Polym. Chem. 2002;40:1808–1817. doi: 10.1002/pola.10259. DOI
Liu P., Pearce C.M., Anastasiadi R.M., Resmini M., Castilla A.M. Covalently crosslinked nanogels: An NMR study of the effect of monomer reactivity on composition and structure. Polymers. 2019;11:353. doi: 10.3390/polym11020353. PubMed DOI PMC
Etrych T., Kovář L., Šubr V., Braunová A., Pechar M., Chytil P., Říhova B., Ulbrich K. High-molecular-weight polymers containing biodegradable disulfide bonds: Synthesis and in vitro verification of intracellular degradation. J. Bioact. Compat. Polym. 2010;25:5–26. doi: 10.1177/0883911509353485. DOI