Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors

. 2020 Jan 01 ; 12 (1) : . [epub] 20200101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31906300

Grantová podpora
16- 28594A Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 31906300
PubMed Central PMC7022460
DOI 10.3390/pharmaceutics12010031
PII: pharmaceutics12010031
Knihovny.cz E-zdroje

This report describes the design, synthesis and evaluation of tumor-targeted polymer probes to visualize epidermal growth factor receptor (EGFR)-positive malignant tumors for successful resection via fluorescence guided endoscopic surgery. Fluorescent polymer probes of various molecular weights enabling passive accumulation in tumors via enhanced permeability and retention were prepared and evaluated, showing an optimal molecular weight of 200,000 g/mol for passive tumor targeting. Moreover, poly(N-(2-hydroxypropyl)methacrylamide)-based copolymers labeled with fluorescent dyes were targeted with the EGFR-binding oligopeptide GE-11 (YHWYGYTPQNVI), human EGF or anti-EGFR monoclonal antibody cetuximab were all able to actively target the surface of EGFR-positive tumor cells. Nanoprobes targeted with GE-11 and cetuximab showed the best targeting profile but differed in their tumor accumulation kinetics. Cetuximab increased tumor accumulation after 15 min, whereas GE 11 needed at least 4 h. Interestingly, after 4 h, there were no significant differences in tumor targeting, indicating the potential of oligopeptide targeting for fluorescence-navigated surgery. In conclusion, fluorescent polymer probes targeted by oligopeptide GE-11 or whole antibody are excellent tools for surgical navigation during oncological surgery of head and neck squamous cell carcinoma, due to their relatively simple design, synthesis and cost, as well as optimal pharmacokinetics and accumulation in tumors.

Zobrazit více v PubMed

Baddour H.M. The Importance of Margins in Head and Neck Cancer. J. Surg. Oncol. 2016;113:248–255. doi: 10.1002/jso.24134. PubMed DOI

Kamat M. A comprehensive review of surgical margin in oral squamous cell carcinoma highlighting the significance of tumor-free surgical margins. J. Cancer Res. Ther. 2019;15:449–454. doi: 10.4103/jcrt.JCRT_273_17. PubMed DOI

Zanoni D.K., Migliacci J.C., Xu B., Katabi N., Montero P.H., Ganly I., Shah J.P., Wong R.J., Ghossein R.A., Patel S.G. A Proposal to Redefine Close Surgical Margins in Squamous Cell Carcinoma of the Oral Tongue. JAMA Otolaryngol. Neck Surg. 2017;143:555. doi: 10.1001/jamaoto.2016.4238. PubMed DOI PMC

Dik E.A., Willems S.M., Ipenburg N.A., Adriaansens S.O., Rosenberg A.J.W.P., Van Es R.J.J. Resection of early oral squamous cell carcinoma with positive or close margins: Relevance of adjuvant treatment in relation to local recurrence: Margins of 3 mm as safe as 5 mm. Oral Oncol. 2014 doi: 10.1016/j.oraloncology.2014.02.014. PubMed DOI

Zabrodsky M., Lukes P., Lukesova E., Boucek J., Plzak J. The Role of Narrow Band Imaging in the Detection of Recurrent Laryngeal and Hypopharyngeal Cancer after Curative Radiotherapy. Biomed Res. Int. 2014 doi: 10.1155/2014/175398. PubMed DOI PMC

Miles B.A., Patsias A., Quang T., Polydorides A.D., Richards-Kortum R., Sikora A.G. Operative margin control with high-resolution optical microendoscopy for head and neck squamous cell carcinoma. Laryngoscope. 2015 doi: 10.1002/lary.25400. PubMed DOI

Liu W., Wang Y.M., Li Y.H., Cai S.J., Yin X.B., He X.W., Zhang Y.K. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal–Organic Framework. Small. 2017 doi: 10.1002/smll.201603459. PubMed DOI

Bethune G., Bethune D., Ridgway N., Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis. 2010;2:48–51. PubMed PMC

Ali R., Wendt M.K. The paradoxical functions of EGFR during breast cancer progression. Signal Transduct. Target. Ther. 2017;2:16042. doi: 10.1038/sigtrans.2016.42. PubMed DOI PMC

Walker F., Abramowitz L., Benabderrahmane D., Duval X., Descatoire V., Hénin D., Lehy T., Aparicio T. Growth factor receptor expression in anal squamous lesions: Modifications associated with oncogenic human papillomavirus and human immunodeficiency virus. Hum. Pathol. 2009;40:1517–1527. doi: 10.1016/j.humpath.2009.05.010. PubMed DOI

Xu H., Zong H., Ma C., Ming X., Shang M., Li K., He X., Du H., Cao L. Epidermal growth factor receptor in glioblastoma. Oncol. Lett. 2017;14:512–516. doi: 10.3892/ol.2017.6221. PubMed DOI PMC

Zimmermann M., Zouhair A., Azria D., Ozsahin M. The epidermal growth factor receptor (EGFR) in head and neck cancer: Its role and treatment implications. Radiat. Oncol. 2006;1:11. doi: 10.1186/1748-717X-1-11. PubMed DOI PMC

Pola R., Parnica J., Zuska K., Bohmová E., Filipová M., Pechar M., Pankrác J., Mucksová J., Trefil P., Kalina J., et al. Oligopeptide-targeted polymer nanoprobes for fluorescence-guided endoscopic surgery. Multifunct. Mater. 2019;2:24004. doi: 10.1088/2399-7532/ab159e. DOI

Franovic A., Gunaratnam L., Smith K., Robert I., Patten D., Lee S. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc. Natl. Acad. Sci. USA. 2007;104:13092–13097. doi: 10.1073/pnas.0702387104. PubMed DOI PMC

Orcutt K.P., Parsons A.D., Sibenaller Z.A., Scarbrough P.M., Zhu Y., Sobhakumari A., Wilke W.W., Kalen A.L., Goswami P., Miller F.J., et al. Erlotinib-Mediated Inhibition of EGFR Signaling Induces Metabolic Oxidative Stress through NOX4. Cancer Res. 2011;71:3932–3940. doi: 10.1158/0008-5472.CAN-10-3425. PubMed DOI PMC

Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J. Control. Release. 2012;164:138–144. doi: 10.1016/j.jconrel.2012.04.038. PubMed DOI

Maeda H., Matsumura Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit. Rev. Ther. Drug Carrier Syst. 1989;6:193–210. PubMed

Etrych T., Mrkvan T., Říhová B., Ulbrich K. Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J. Control. Release. 2007;122:31–38. doi: 10.1016/j.jconrel.2007.06.007. PubMed DOI

Etrych T., Strohalm J., Kovář L., Kabešová M., Říhová B., Ulbrich K. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J. Control. Release. 2009;140:18–26. doi: 10.1016/j.jconrel.2009.07.011. PubMed DOI

Etrych T., Strohalm J., Chytil P., Černoch P., Starovoytova L., Pechar M., Ulbrich K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011;42:527–539. doi: 10.1016/j.ejps.2011.03.001. PubMed DOI

Imagej. [(accessed on 11 October 2018)]; Available online: https://imagej.net.

Li S., Schmitz K.R., Jeffrey P.D., Wiltzius J.J.W., Kussie P., Ferguson K.M. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7:301–311. doi: 10.1016/j.ccr.2005.03.003. PubMed DOI

Genta I., Chiesa E., Colzani B., Modena T., Conti B., Dorati R. GE11 peptide as an active targeting agent in antitumor therapy: A minireview. Pharmaceutics. 2018;10:2. doi: 10.3390/pharmaceutics10010002. PubMed DOI PMC

Mazzuca C., Di Napoli B., Biscaglia F., Ripani G., Rajendran S., Braga A., Benna C., Mocellin S., Gobbo M., Meneghetti M., et al. Understanding the good and poor cell targeting activity of gold nanostructures functionalized with molecular units for the epidermal growth factor receptor. Nanoscale Adv. 2019;1:1970–1979. doi: 10.1039/C9NA00096H. PubMed DOI PMC

Etrych T., Subr V., Strohalm J., Sírová M., Ríhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;31:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI

Tolmachev V., Orlova A., Wei Q., Bruskin A., Carlsson J., Gedda L. Comparative Biodistribution of Potential Anti- Glioblastoma Conjugates [ 111 In]DTPA-hEGF and [ 111 In]Bz-DTPA-hEGF in Normal Mice. Cancer Biother. Radiopharm. 2004;19:491–502. doi: 10.1089/1084978041979616. PubMed DOI

Huang L., Gainkam L.O.T., Caveliers V., Vanhove C., Keyaerts M., De Baetselier P., Bossuyt A., Revets H., Lahoutte T. SPECT Imaging with 99mTc-Labeled EGFR-Specific Nanobody for In Vivo Monitoring of EGFR Expression. Mol. Imaging Biol. 2008;10:167–175. doi: 10.1007/s11307-008-0133-8. PubMed DOI

Liu F., Jiao Y., Jiao Y., Garcia-Godoy F., Gu W., Liu Q. Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system. BMC Genet. 2016;17:146. doi: 10.1186/s12863-016-0449-3. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery

. 2021 Feb 10 ; 11 (2) : . [epub] 20210210

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace