Emotional prosody recognition is impaired in Alzheimer's disease

. 2022 Apr 05 ; 14 (1) : 50. [epub] 20220405

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35382868
Odkazy

PubMed 35382868
PubMed Central PMC8985328
DOI 10.1186/s13195-022-00989-7
PII: 10.1186/s13195-022-00989-7
Knihovny.cz E-zdroje

BACKGROUND: The ability to understand emotions is often disturbed in patients with cognitive impairments. Right temporal lobe structures play a crucial role in emotional processing, especially the amygdala, temporal pole (TP), superior temporal sulcus (STS), and anterior cingulate (AC). Those regions are affected in early stages of Alzheimer´s disease (AD). The aim of our study was to evaluate emotional prosody recognition (EPR) in participants with amnestic mild cognitive impairment (aMCI) due to AD, AD dementia patients, and cognitively healthy controls and to measure volumes or thickness of the brain structures involved in this process. In addition, we correlated EPR score to cognitive impairment as measured by MMSE. The receiver operating characteristic (ROC) analysis was used to assess the ability of EPR tests to differentiate the control group from the aMCI and dementia groups. METHODS: Eighty-nine participants from the Czech Brain Aging Study: 43 aMCI due to AD, 36 AD dementia, and 23 controls, underwent Prosody Emotional Recognition Test. This experimental test included the playback of 25 sentences with neutral meaning each recorded with different emotional prosody (happiness, sadness, fear, disgust, anger). Volume of the amygdala and thickness of the TP, STS, and rostral and caudal parts of AC (RAC and CAC) were measured using FreeSurfer algorithm software. ANCOVA was used to evaluate EPR score differences. ROC analysis was used to assess the ability of EPR test to differentiate the control group from the aMCI and dementia groups. The Pearson's correlation coefficients were calculated to explore relationships between EPR scores, structural brain measures, and MMSE. RESULTS: EPR was lower in the dementia and aMCI groups compared with controls. EPR total score had high sensitivity in distinguishing between not only controls and patients, but also controls and aMCI, controls and dementia, and aMCI and dementia. EPR decreased with disease severity as it correlated with MMSE. There was a significant positive correlation of EPR and thickness of the right TP, STS, and bilateral RAC. CONCLUSIONS: EPR is impaired in AD dementia and aMCI due to AD. These data suggest that the broad range of AD symptoms may include specific deficits in the emotional sphere which further complicate the patient's quality of life.

Zobrazit více v PubMed

Ferretti V, Papaleo F. Understanding others: emotion recognition abilities in humans and other animals. Genes, Brain Behav. 2018:e12544 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/gbb.12544. PubMed DOI

Hasson-Ohayon I, Mashiach-Eizenberg M, Arnon-Ribenfeld N, Kravetz S, Roe D. Neuro-cognition and social cognition elements of social functioning and social quality of life. Psychiatry Res. 2017;258:538–543. PubMed

Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol [Internet]. 2002;12:169–177. PubMed

Marcó-García S, Ferrer-Quintero M, Usall J, Ochoa S, Del Cacho N, Huerta-Ramos E. Facial emotion recognition in neurological disorders: a narrative review. Rev Neurol. 2019;69(5):207–219. 10.33588/rn.6905.2019047. PubMed

Fortier J, Besnard J, Allain P. Theory of mind, empathy and emotion perception in cortical and subcortical neurodegenerative diseases. Rev Neurol (Paris) [Internet] 2018;174:237–246. PubMed

Hutchings R, Palermo R, Piguet O, Kumfor F. Disrupted face processing in frontotemporal dementia: a review of the clinical and neuroanatomical evidence. Neuropsychol Rev [Internet] 2017;27:18–30. PubMed

Elferink MW-OO, Van Tilborg I, Kessels RPC. Perception of emotions in mild cognitive impairment and Alzheimer’s dementia: does intensity matter? Transl Neurosci [Internet]. 2015;6:139–149. PubMed PMC

Henley SMD, Novak MJU, Frost C, King J, Tabrizi SJ, Warren JD. Emotion recognition in Huntington’s disease: a systematic review. Neurosci Biobehav Rev [Internet]. 2012;36:237–253. PubMed

Wasser CI, Evans F, Kempnich C, Glikmann-Johnston Y, Andrews SC, Thyagarajan D, et al. Emotion recognition in Parkinson’s disease: static and dynamic factors. Neuropsychology [Internet] 2018;32:230–234. PubMed

Bora E, Meletti S. Social cognition in temporal lobe epilepsy: a systematic review and meta-analysis. Epilepsy Behav [Internet] Elsevier BV. 2016;60:50–57. doi: 10.1016/j.yebeh.2016.04.024. PubMed DOI

Byom L, Duff M, Mutlu B, Turkstra L. Facial emotion recognition of older adults with traumatic brain injury. Brain Inj [Internet]. 2019;33:322–332. PubMed PMC

Spunt RP, Adolphs R. The neuroscience of understanding the emotions of others. Neurosci Lett [Internet] Elsevier BV. 2019;693:44–48. doi: 10.1016/j.neulet.2017.06.018. PubMed DOI PMC

Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain [Internet]. 2007;130:1718–1731. PubMed

Gallagher M, Chiba AA. The amygdala and emotion. Curr Opin Neurobiol [Internet] Elsevier BV. 1996;6:221–227. doi: 10.1016/s0959-4388(96)80076-6. PubMed DOI

Deen B, Saxe R, Kanwisher N. Processing communicative facial and vocal cues in the superior temporal sulcus. Neuroimage [Internet] 2020;221:117191. doi: 10.1016/j.neuroimage.2020.117191. PubMed DOI

Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci [Internet] 2000;4:215–222. doi: 10.1016/s1364-6613(00)01483-2. PubMed DOI

Iidaka T. Role of the fusiform gyrus and superior temporal sulcus in face perception and recognition: an empirical review. Jpn Psychol Res [Internet] Wiley. 2013;56:33–45. doi: 10.1111/jpr.12018. DOI

Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain [Internet]. 2020;143:1233–1248. PubMed PMC

ten Kate M, Barkhof F, Boccardi M, Visser PJ, Jack CR, Lovblad K-OO, et al. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging [Internet] 2017;52:167–182.e1. PubMed

Herzog ED, Muglia LJ. You are when you eat. Nat Neurosci [Internet] 2006;9:300–302. PubMed

Albert MS, Cohen C, Koff E. Perception of affect in patients with dementia of the Alzheimer type. Arch Neurol [Internet] 1991;48:791–795. PubMed

Shimokawa A, Yatomi N, Anamizu S, Torii S, Isono H, Sugai Y. Recognition of facial expressions and emotional situations in patients with dementia of the Alzheimer and vascular types. Dement Geriatr Cogn Disord [Internet]. 2003;15:163–168. PubMed

Burnham H, Hogervorst E. Recognition of facial expressions of emotion by patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord [Internet]. 2004;18:75–79. PubMed

Lavenu I, Pasquier F, Lebert F, Petit H, Van Der Linden M. Perception of emotion in frontotemporal dementia and Alzheimer disease. Alzheimer Dis Assoc Disord [Internet]. 1999;13:96–101. PubMed

Drapeau J, Gosselin N, Gagnon L, Peretz I, Lorrain D. Emotional recognition from face, voice, and music in dementia of the Alzheimer type. Ann N Y Acad Sci [Internet]. 2009;1169:342–345. doi: 10.1111/j.1749-6632.2009.04768.x. PubMed DOI

Hargrave R, Maddock RJ, Stone V. Impaired recognition of facial expressions of emotion in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci [Internet] 2002;14:64–71. PubMed

Henry JD, Ruffman T, McDonald S, O’Leary MAP, Phillips LH, Brodaty H, et al. Recognition of disgust is selectively preserved in Alzheimer’s disease. Neuropsychologia [Internet] 2008;46:1363–1370. PubMed

Weiss EM, Kohler CG, Vonbank J, Stadelmann E, Kemmler G, Hinterhuber H, et al. Impairment in emotion recognition abilities in patients with mild cognitive impairment, early and moderate alzheimer disease compared with healthy comparison subjects. Am J Geriatr Psychiatry [Internet] 2008;16:974–980. PubMed

Horley K, Reid A, Burnham D. Emotional prosody perception and production in dementia of the Alzheimer’s type. J Speech, Lang Hear Res [Internet] 2010;53:1132–1146. PubMed

Bucks RS, Radford SA. Emotion processing in Alzheimer’s disease. Aging Ment Heal [Internet]. 2004;8:222–232. PubMed

Watson R, Latinus M, Noguchi T, Garrod O, Crabbe F, Belin P. Crossmodal adaptation in right posterior superior temporal sulcus during face-voice emotional integration. J Neurosci [Internet]. 2014;34:6813–6821. PubMed PMC

Sheardova K, Vyhnalek M, Nedelska Z, Laczo J, Andel R, Marciniak R, Cerman J, Lerch OHJ, Sheardova K, Vyhnalek M, Nedelska Z, Laczo J, Andel R, et al. Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open [Internet] 2019;9:e030379. PubMed PMC

Laczó J, Andel R, Vyhnalek M, Matoska V, Kaplan V, Nedelska Z, et al. The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol Aging [Internet]. 2015;36:2024–2033. PubMed

Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med [Internet] 2004;256:183–194. PubMed

Yesavage JA. Geriatric Depression Scale. Psychopharmacol Bull. 1988;24:709–711. PubMed

Fazekas F, Chawluk J, Alavi A, Hurtig H, Zimmerman R. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol [Internet] 1987;149:351–356. PubMed

Ariatti A, Benuzzi F, Nichelli P. Recognition of emotions from visual and prosodic cues in Parkinson’s disease. Neurol Sci [Internet]. 2008;29:219–227. PubMed

Kerbler GM, Nedelska Z, Fripp J, Laczó J, Vyhnalek M, Lisý J, et al. Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer’s disease patients. Front Aging Neurosci [Internet]. 2015;7 Available from: http://journal.frontiersin.org/article/10.3389/fnagi.2015.00185. PubMed DOI PMC

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–355. PubMed

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex [Internet] Oxford University Press. 2004;14:11–22. PubMed

Bhatia S, Bookheimer SY, Gaillard WD, Theodore WH. Measurement of whole temporal lobe and hippocampus for MR volumetry: normative data. Neurology [Internet]. 1993;43:2006. PubMed

Cechova K, Andel R, Angelucci F, Chmatalova Z, Markova H, Laczó J, et al. Impact of APOE and BDNF Val66Met gene polymorphisms on cognitive functions in patients with amnestic mild cognitive impairment. Lim YY, editor. J Alzheimer’s Dis. 2020;73:247–257. PubMed

Team R. RStudio: integrated development environment for R. Boston: RStudio, Inc.; 2016.

Spoletini I, Marra C, Di Iulio F, Gianni W, Sancesario G, Giubilei F, et al. Facial emotion recognition deficit in amnestic mild cognitive impairment and Alzheimer disease. Am J Geriatr Psychiatry [Internet]. 2008;16:389–398. PubMed

Varjassyová A, Hořínek D, Andel R, Amlerova J, Laczó J, Sheardová K, et al. Recognition of facial emotional expression in amnestic mild cognitive impairment. J Alzheimer’s Dis [Internet] 2013;33:273–280. PubMed PMC

Templier L, Chetouani M, Plaza M, Belot Z, Bocquet P, Chaby L. Altered identification with relative preservation of emotional prosody production in patients with Alzheimer’s disease. Geriatr Psychol Neuropsychiatr Vieil [Internet] 2015;13:106–115. PubMed

Kato S, Homma A, Sakuma T. Easy screening for mild Alzheimer’s disease and mild cognitive impairment from elderly speech. Curr Alzheimer Res [Internet]. 2017;15:104–110. PubMed

Zhou S-SS, Gao X, Hu Y-JJ, Zhu Y-MM, Tian Y-HH, Wang K. Selective impairment of musical emotion recognition in patients with amnesic mild cognitive impairment and mild to moderate Alzheimer disease. Chin Med J (Engl) [Internet] 2019;132:2308–2314. PubMed PMC

Lombardi G, Crescioli G, Cavedo E, Lucenteforte E, Casazza G, Bellatorre AG, Lista C, Costantino G, Frisoni G, Virgili GFG, Lombardi G, Crescioli G, Cavedo E, Lucenteforte E, Casazza G, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst Rev [Internet] 2020;3:CD009628. PubMed PMC

Killgore WDS, Yurgelun-Todd DA. The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)? Soc Cogn Affect Neurosci [Internet] 2007;2:240–250. doi: 10.1093/scan/nsm020. PubMed DOI PMC

Cohen M, Prather A, Town P, Hynd G. Neurodevelopmental differences in emotional prosody in normal children and children with left and right temporal lobe epilepsy. Brain Lang [Internet] Elsevier BV. 1990;38:122–134. doi: 10.1016/0093-934x(90)90105-p. PubMed DOI

Monti G, Meletti S, Petersen RC. Emotion recognition in temporal lobe epilepsy: a systematic review. Neurosci Biobehav Rev [Internet]. 2015;55:280–293. PubMed

Pichon S, Kell CA. Affective and sensorimotor components of emotional prosody generation. J Neurosci [Internet] 2013;33:1640–1650. doi: 10.1523/jneurosci.3530-12.2013. PubMed DOI PMC

Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, et al. Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. Neuroimage [Internet] Elsevier BV. 2013;76:45–56. doi: 10.1016/j.neuroimage.2013.02.064. PubMed DOI

Gröne M, Dyck M, Koush Y, Bergert S, Mathiak KA, Alawi EM, et al. Upregulation of the rostral anterior cingulate cortex can alter the perception of emotions: fMRI-based neurofeedback at 3 and 7 T. Brain Topogr [Internet] Springer Scie Business Media LLC. 2014;28:197–207. doi: 10.1007/s10548-014-0384-4. PubMed DOI

Kanske P, Kotz SA. Emotion speeds up conflict resolution: a new role for the ventral anterior cingulate cortex? Cereb Cortex [Internet] 2010;21:911–919. doi: 10.1093/cercor/bhq157. PubMed DOI

Hervé P-Y, Razafimandimby A, Jobard G, Tzourio-Mazoyer N. A shared neural substrate for mentalizing and the affective component of sentence comprehension. PLoS One [Internet] 2013;8:e54400. doi: 10.1371/journal.pone.0054400. PubMed DOI PMC

Alaerts K, Woolley DG, Steyaert J, Di Martino A, Swinnen SP, Wenderoth N. Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Soc Cogn Affect Neurosci [Internet] 2013;9:1589–1600. PubMed PMC

Sliwinska MW, Pitcher D. TMS demonstrates that both right and left superior temporal sulci are important for facial expression recognition. Neuroimage [Internet]. 2018;183:394–400. PubMed

Corradi-Dell’Acqua C, Hofstetter C, Vuilleumier P. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex. Soc Cogn Affect Neurosci [Internet]. 2014;9:1175–1184. PubMed PMC

Lupton MK, Strike L, Hansell NK, Wen W, Mather KA, Armstrong NJ, et al. The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume. Neurobiol Aging [Internet] 2016;40:68–77. PubMed PMC

Rapcsak SZ. Face recognition. Curr Neurol Neurosci Rep [Internet]. 2019;19:–41. Available from 10.1007/s11910-019-0960-9. PubMed

Guzmán-Vélez E, Warren DE, Feinstein JS, Bruss J, Tranel D. Dissociable contributions of amygdala and hippocampus to emotion and memory in patients with Alzheimer’s disease. Hippocampus [Internet]. 2016;26:727–738. doi: 10.1002/hipo.22554. PubMed DOI

Hořínek D, Varjassyová A, Hort J. Magnetic resonance analysis of amygdalar volume in Alzheimerʼs disease. Curr Opin Psychiatry [Internet] 2007;20:273–277. doi: 10.1097/yco.0b013e3280ebb613. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...